留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高光谱成像技术的涌泉蜜桔糖度最优检测位置

李斌 万霞 刘爱伦 邹吉平 卢英俊 姚迟 刘燕德

李斌, 万霞, 刘爱伦, 邹吉平, 卢英俊, 姚迟, 刘燕德. 基于高光谱成像技术的涌泉蜜桔糖度最优检测位置[J]. , 2024, 17(1): 128-139. doi: 10.37188/CO.2023-0057
引用本文: 李斌, 万霞, 刘爱伦, 邹吉平, 卢英俊, 姚迟, 刘燕德. 基于高光谱成像技术的涌泉蜜桔糖度最优检测位置[J]. , 2024, 17(1): 128-139. doi: 10.37188/CO.2023-0057
LI Bin, WAN Xia, LIU Ai-lun, ZOU Ji-ping, LU Ying-jun, YAO Chi, LIU Yan-de. Optimal position for suger content detection of Yongquan honey oranges based on hyperspectral imaging technology[J]. Chinese Optics, 2024, 17(1): 128-139. doi: 10.37188/CO.2023-0057
Citation: LI Bin, WAN Xia, LIU Ai-lun, ZOU Ji-ping, LU Ying-jun, YAO Chi, LIU Yan-de. Optimal position for suger content detection of Yongquan honey oranges based on hyperspectral imaging technology[J]. Chinese Optics, 2024, 17(1): 128-139. doi: 10.37188/CO.2023-0057

基于高光谱成像技术的涌泉蜜桔糖度最优检测位置

基金项目: 青年科学基金项目(No.12103019)
详细信息
    作者简介:

    李 斌(1989-),男,江西鹰潭人,博士,副教授,华东交通大学机电学院教师,2012年于武汉大学获得学士学位,2017年于中国科学院光电技术研究所获得博士学位,主要研究方向:无损智能检测。E-mail:libingioe@126.com

    刘燕德(1967—),女,江西吉安人,博士,二级教授,智能机电装备创新研究院院长,2001 年于江西农业大学获得硕士学位,2006 年于浙江大学获得博士学位,主要研究方向:光电无损检测技术、光机电一体化技术与装备。E-mail:liuyande@ecjtu.jx.cn

  • 中图分类号: O433.4

Optimal position for suger content detection of Yongquan honey oranges based on hyperspectral imaging technology

Funds: Supported by Youth Science Fund Projects (No.12103019)
More Information
  • 摘要:

    本文旨在探索涌泉蜜桔糖度的最优检测位置和最佳预测模型,以便为蜜桔糖度检测分级提供理论依据。本文利用波长为390.2~981.3 nm的高光谱成像系统对涌泉蜜桔糖度最佳检测位置进行研究,将涌泉蜜桔的花萼、果茎、赤道和全局的光谱信息与其对应部位的糖度结合,建立其预测模型。使用标准正态变量变换(SNV)、多元散射校正(MSC)、基线校准(Baseline)和SG平滑(Savitzkv-Golay)4种预处理方法对不同部位的原始光谱进行预处理,用预处理后的光谱数据建立偏最小二乘回归(PLSR)和最小二乘支持向量机(LSSVM)模型。找出蜜桔不同部位的最佳预处理方式,对经过最佳预处理后的光谱数据采用竞争性自适应重加权算法(CARS)和无信息变量消除法(UVE)进行特征波长筛选。最后,用筛选后的光谱数据建立PLSR和LSSVM模型并进行分析比较。研究结果表明,全局的MSC-CARS-LSSVM模型预测效果最佳,其预测集相关系数Rp=0.955,均方根误差RMSEP=0.395,其次是蜜桔赤道部位的SNV-PLSR模型,其预测集相关系数Rp=0.936,均方根误差RMSEP=0.37。两者预测集相关系数相近,因此可将赤道位置作为蜜桔糖度的最优检测位置。本研究表明根据蜜桔不同部位建立的糖度预测模型的预测效果有所差异,研究最优检测位置和最佳预测模型可以为蜜桔进行糖度检测分级提供理论依据。

     

  • 图 1  涌泉蜜桔不同部位图像

    Figure 1.  Images of different parts of Yongquan honey oranges

    图 2  高光谱成像装置示意图

    Figure 2.  Schematic diagram of the hyperspectral imaging device

    图 3  涌泉蜜桔光谱曲线。(a)不同部位的原始光谱曲线;(b)不同部位的平均光谱曲线

    Figure 3.  Spectral curves of Yongquan honey orange. (a) Original spectral curves of different parts; (b) average spectral curves of different parts

    图 4  CARS果茎部位特征波长选择过程。(a)变量数变化;(b)交叉验证均方根变化;(c)回归系数变化

    Figure 4.  Selecting process of the characteristic wavelength of the fruit stem part by CARS. (a) Changes in number of variables; (b) changes in the RMSECV; (c) changes in regression coefficient

    图 5  两种预处理方法基于CARS算法果茎部位特征波长位置图。(a)Baseline;(b)MSC

    Figure 5.  Location map of the characteristic wavelengths in the fruit stem part based on the CARS algorithm corresponding to the pretreatments (a) Baseline and (b) MSC

    下载: 全尺寸图片