An ultraviolet laser at 228 nm with adjustable repetition rate and narrow pulse width
-
摘要:
紫外金宝搏188软件怎么用 器是研究紫外共振拉曼光谱的重要工具,拉曼信号可以通过共振拉曼效应得到增强,从而降低拉曼测量的探测极限。本文研究了一种输出波长为228 nm的窄脉宽全固态紫外金宝搏188软件怎么用 器。首先,以Nd:YVO4作为增益介质,采用电光调Q腔倒空技术,实现了纳秒量级914 nm基频光输出。然后,经过偏硼酸锂(LBO)晶体产生二次谐波,最终经偏硼酸钡(BBO)晶体获得四次谐波228 nm紫外金宝搏188软件怎么用 。在此基础上,进一步研究了不同重复频率时基频光和倍频光功率的变化规律,优化了紫外金宝搏188软件怎么用 器的输出效率。实验结果表明:当总抽运功率为30 W时,在10 kHz重复频率下,可获得最高平均功率为84 mW的228 nm紫外金宝搏188软件怎么用 输出。228 nm金宝搏188软件怎么用 在5~25 kHz重复频率范围内连续可调,脉冲宽度保持在2.8~2.9 ns,能够满足紫外光谱检测技术领域的应用需求。
-
关键词:
- 228 nm金宝搏188软件怎么用 器 /
- 紫外金宝搏188软件怎么用 /
- 腔倒空技术 /
- 二次谐波
Abstract:Ultraviolet lasers play an important role in the study of ultraviolet resonance Raman spectroscopy. The Raman signals can be enhanced by the resonant Raman effect, thereby reducing the detection limit of Raman measurement. We focus on the study of a narrow-pulse all-solid-state ultraviolet laser with an output wavelength of 228 nm. The Nd:YVO4 is used as the gain medium and the electro-optic Q-switched cavity dumped technique is applied to achieve a fundamental frequency output of 914 nm in pulse width of several nanoseconds. Then, the second-harmonic light is generated by LiB3O5(LBO), and the fourth-harmonic 228 nm UV laser is obtained by beta-barium-borate (BBO) crystal. On this basis, further research has been conducted on the variation of fundamental and second harmonic laser power at different repetition rates. Due to the low gain of Nd:YVO4 at 914 nm, the average power of the laser is saturated and decreases with increased repetition rate. The output efficiency of UV laser is optimized by adjusting the focus lens. At the pump power of 30 W and the repetition frequency of 10 kHz, a 228 nm UV laser output with the highest average power of 84 mW is obtained. The UV laser is continuously adjustable within the range of 5−25 kHz repetition frequency and the pulse width is maintained at 2.8 to 2.9 ns, which meets the application requirements in the field of UV spectroscopy detection technology.
-
Key words:
- 228 nm laser /
- ultraviolet laser /
- cavity dumped laser /
- second harmonic
-
图 12 紫外金宝搏188软件怎么用 光斑强度分布图。(a)二维空间强度分布;(b)三维空间强度分布;(c)水平方向强度分布;(d)竖直方向强度分布
Figure 12. Spot intensity distribution diagrams of ultra-violet laser. (a) Two-dimensional spatial intensity distribution; (b) three-dimensional spatial intensity distribution; (c) horizontal intensity distribution; (d) vertical intensity distribution
-
[1] 何玉青, 魏帅迎, 郭一新, 等. 远程紫外拉曼光谱检测技术研究进展[J]. 中国光学,2019,12(6):1249-1259. doi: 10.3788/co.20191206.1249HE Y Q, WEI SH Y, GUO Y X, et al. Research progress of remote detection with ultraviolet Raman spectroscopy[J]. Chinese Optics, 2019, 12(6): 1249-1259. (in Chinese) doi: 10.3788/co.20191206.1249 [2] 吉于今, 楚学影, 董旭, 等. 紫外偏振敏感的CsPbBr3纳米薄膜的可见光发射(英文)[J]. 中国光学(中英文),2023,16(1):202-213. doi: 10.37188/CO.2022-0152JI Y J, CHU X Y, DONG X, et al. Visible light emission of ultraviolet polarization sensitive CsPbBr3 nano-films[J]. Chinese Optics, 2023, 16(1): 202-213. (in Chinese) doi: 10.37188/CO.2022-0152 [3] HOLTUM T, BLOINO J, PAPPAS C, et al. Ultraviolet resonance Raman spectroscopy of anthracene: experiment and theory[J]. Journal of Raman Spectroscopy, 2021, 52(12): 2292-2300. doi: 10.1002/jrs.6223 [4] KUMAMOTO Y, TAGUCHI A, KAWATA S. Deep-ultraviolet biomolecular imaging and analysis[J]. Advanced Optical Materials, 2019, 7(5): 1801099. doi: 10.1002/adom.201801099 [5] OJAGHI A, CARRAZANA G, CARUSO C, et al. Label-free hematology analysis using deep-ultraviolet microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(26): 14779-14789. doi: 10.1073/pnas.2001404117 [6] SOLTANI S, OJAGHI A, ROBLES F E. Deep UV dispersion and absorption spectroscopy of biomolecules[J]. Biomedical Optics Express, 2019, 10(2): 487-499. doi: 10.1364/BOE.10.000487 [7] SOLTANI S, OJAGHI A, QIAO H, et al. Prostate cancer histopathology using label-free multispectral deep-UV microscopy quantifies phenotypes of tumor aggressiveness and enables multiple diagnostic virtual stains[J]. Scientific Reports, 2022, 12(1): 9329. doi: 10.1038/s41598-022-13332-9 [8] WYNN C M, PALMACCI S, KUNZ R R, et al. Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence[J]. Optics Express, 2010, 18(6): 5399-5406. doi: 10.1364/OE.18.005399 [9] GAGNÉ M, KASHYAP R. New nanosecond Q-switched Nd: VO4 laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication[J]. Optics Communications, 2010, 283(24): 5028-5032. doi: 10.1016/j.optcom.2010.07.074 [10] 牛娜, 窦微, 浦双双, 等. 蓝光二极管抽运Pr: YLF腔内倍频连续深紫外金宝搏188软件怎么用 器[J]. 中国光学,2021,14(6):1395-1399. doi: 10.37188/CO.2021-0077NIU N, DOU W, PU SH SH, et al. Continuous deep ultraviolet laser by intracavity frequency doubling of blue laser diode pumped Pr: YLF[J]. Chinese Optics, 2021, 14(6): 1395-1399. (in Chinese) doi: 10.37188/CO.2021-0077 [11] DEYRA L, MARTIAL I, DIDIERJEAN J, et al. Deep-UV 236.5 nm laser by fourth-harmonic generation of a single-crystal fiber Nd: YAG oscillator[J]. Optics Letters, 2014, 39(8): 2236-2239. doi: 10.1364/OL.39.002236 [12] KANEDA Y, YARBOROUGH J M, MERZLYAK Y, et al. Continuous-wave, single-frequency 229 nm laser source for laser cooling of cadmium atoms[J]. Optics Letters, 2016, 41(4): 705-708. doi: 10.1364/OL.41.000705 [13] BYKOV S V, ROPPEL R D, MAO M, et al. 228-nm quadrupled quasi-three-level Nd: GdVO4 laser for ultraviolet resonance Raman spectroscopy of explosives and biological molecules[J]. Journal of Raman Spectroscopy, 2020, 51(12): 2478-2488. doi: 10.1002/jrs.5999 [14] DAI SH T, JIANG T, WU H CH, et al. Tunable narrow-linewidth 226 nm laser for hypersonic flow velocimetry[J]. Optics Letters, 2020, 45(8): 2291-2294. doi: 10.1364/OL.390347 [15] 石朝辉, 刘学松, 黄玉涛, 等. 500 kHz, 6 ns高重复频率电光腔倒空Nd: YVO4金宝搏188软件怎么用 器[J]. 中国金宝搏188软件怎么用 ,2014,41(10):1002006. doi: 10.3788/CJL201441.1002006SHI ZH H, LIU X S, HUANG Y T, et al. 500 kHz, 6 ns high repetition-rate electro-optical cavity dumped Nd: YVO4 laser[J]. Chinese Journal of Lasers, 2014, 41(10): 1002006. (in Chinese) doi: 10.3788/CJL201441.1002006 [16] LIU K, CHEN Y, LI F Q, et al. High peak power 4.7 ns electro-optic cavity dumped TEM00 1342-nm Nd: YVO4 laser[J]. Applied Optics, 2015, 54(4): 717-720. doi: 10.1364/AO.54.000717 [17] YU X, WANG C, MA Y F, et al. Performance improvement of high repetition rate electro-optical cavity-dumped Nd: GdVO4 laser[J]. Applied Physics B, 2012, 106(2): 309-313. doi: 10.1007/s00340-011-4786-7 [18] LIU K, HE L J, BO Y, et al. Pulse width adjustable Q-switched cavity dumped laser by rotating a quarter-wave plate and a Pockels cell[J]. Optics Letters, 2017, 42(13): 2467-2470. doi: 10.1364/OL.42.002467 [19] CHEN F, SUN J J, YAN R P, et al. Reabsorption cross section of Nd3+-doped quasi-three-level lasers[J]. Scientific Reports, 2019, 9(1): 5620. doi: 10.1038/s41598-019-42012-4 [20] 王晓洋, 刘丽娟. 深紫外非线性光学晶体及全固态深紫外相干光源研究进展[J]. 中国光学,2020,13(3):427-441.WANG X Y, LIU L J. Research progress of deep-UV nonlinear optical crystals and all-solid-state deep-UV coherent light sources[J]. Chinese Optics, 2020, 13(3): 427-441. (in Chinese)