Key technology analysis and research progress of high-power narrow linewidth fiber laser based on the multi-longitudinal-mode oscillator seed source
-
摘要:
基于多纵模振荡种子源的窄线宽光纤 器具有光路简单、结构紧凑、可靠性高、成本低等特点,在实际工程应用以及在空间受限的载荷平台上有着显著优势,是高功率光谱合成的理想子束模块。受自脉冲效应的影响,多纵模振荡种子源的时域特性较差,导致放大过程中会产生较强的光谱展宽与受激拉曼散射效应。这限制了其输出功率的进一步提升并降低了其光谱纯度。本文首先介绍了4种常见的窄线宽种子源,并重点分析了多纵模振荡种子源中自脉冲效应产生的机理及抑制方法,对优化多纵模振荡种子源和放大器的关键技术进行了详细介绍,归纳总结了近几年的技术突破与研究成果,对未来的发展方向进行了展望分析。本文研究对基于多纵模振荡种子源的窄线宽 器的功率提升和光谱优化提供一定思路。
Abstract:Narrow linewidth fiber lasers, based on the multi-longitudinal-mode oscillator seed source, have obvious advantages in engineering applications and space-limited loading platforms. Additionally, they are considered ideal sub-modules for high-power spectral combinations. The time domain of this type of seed is unstable due to the self-pulse effect, causing significant spectral broadening and stimulated Raman scattering effects during the amplification process, which limits their further improvement in output power and affects the purity of laser spectra. In this paper, we introduce four commonly used narrow linewidth seeds. The mechanism and suppression methods of the self-pulse effect in multi-longitudinal mode oscillator seeds are analyzed. Critical technologies essential for the optimization and relevant progress of the multi-longitudinal-mode oscillator seed source and amplifier stages are discussed in detail. A future development outlook is also presented. This paper serves as a useful reference for the design of narrow linewidth fiber lasers based on the multi-longitudinal-mode oscillator seed source.
-
图 1 不同窄线宽种子源示意图。(a)单频 相位调制种子源;(b)超荧光光源窄带滤波种子源;(c)随机光纤 器种子源;(d)多纵模振荡种子源
Figure 1. Schematic diagram of different narrow-linewidth seed sources. (a) Phase modulated single frequency laser seed source; (b) narrow-band filtered superfluorescent seed source; (c) random fiber laser seed source; (d) narrow-linewidth multi-longitudinal-mode oscillator seed source
图 2 不同功率和时间尺度上的自脉冲时域信号。(a)在微秒尺度上的 阈值自脉冲;(b)在十纳秒尺度上的 阈值自脉冲;(c)在微秒尺度上的较高功率 自脉冲;(d)在十纳秒尺度上的较高功率 自脉冲[35]
Figure 2. Time-domain signals of self-pulse at different time scales and powers. (a) Laser threshold self-pulse at the scale of microsecond; (b) laser threshold self-pulse at the scale of ten nanoseconds; (c) laser self-pulse with higher power at the scale of microsecond; (d) laser self-pulse with higher power at the scale of ten nanoseconds[35]
-
[1] PERRAM G P, MARCINIAK M A, GODA M. High-energy laser weapons: technology overview[J]. Proceedings of SPIE, 2004, 5414: 1-25. doi: 10.1117/12.544529 [2] Cook J. High-energy laser weapons since the early 1960s[J]. Optical Engineering, 2013, 52.2: 021007-021007. [3] EXTANCE A. Military technology: laser weapons get real[J]. Nature, 2015, 521(7553): 408-410. doi: 10.1038/521408a [4] 楼祺洪, 周军, 王之江. 光纤 作为 武器的能力分析[J]. 技术,2003,27(3):161-165.LOU Q H, ZHOU J, WANG ZH J. Analysis of high-power fiber laser weapons[J]. Laser Technology, 2003, 27(3): 161-165. (in Chinese) [5] 何旭宝, 奚小明, 张汉伟, 等. 基于双色镜的光纤 光谱合成研究进展[J]. 与光电子学进展,2021,58(9):0900004.HE X B, XI X M, ZHANG H W, et al. Research progress of fiber laser spectral combining based on dichromatic mirror[J]. Laser & Optoelectronics Progress, 2021, 58(9): 0900004. (in Chinese) [6] CHEUNG E C, HO J G, GOODNO G D, et al. Diffractive-optics-based beam combination of a phase-locked fiber laser array[J]. Optics Letters, 2008, 33(4): 354-356. doi: 10.1364/OL.33.000354 [7] WIRTH C, SCHMIDT O, TSYBIN I, et al. High average power spectral beam combining of four fiber amplifiers to 8.2 kW[J]. Optics Letters, 2011, 36(16): 3118-3120. doi: 10.1364/OL.36.003118 [8] ZHENG Y, YANG Y F, WANG J H, et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation[J]. Optics Express, 2016, 24(11): 12063-12071. doi: 10.1364/OE.24.012063 [9] ZHENG Y, ZHU ZH D, LIU X X, et al. High-power, high-beam-quality spectral beam combination of six narrow-linewidth fiber amplifiers with two transmission diffraction gratings[J]. Applied Optics, 2019, 58(30): 8339-8343. doi: 10.1364/AO.58.008339 [10] 郑也, 何苗, 刘小溪, 等. 基于二向色镜的高功率 组束实验研究[J]. 与光电子学进展,2023,60(15):1514002.ZHENG Y, HE M, LIU X X, et al. Experimental study on high-power laser beam combining using dichroic mirrors[J]. Laser & Optoelectronics Progress, 2023, 60(15): 1514002. (in Chinese) [11] 张万儒, 粟荣涛, 李灿, 等. 窄线宽光纤 振荡器研究进展(特邀)[J]. 红外与 工程,2022,51(6):20210879. doi: 10.3788/IRLA20210879ZHANG W R, SU R T, LI C, et al. Research progress of narrow linewidth fiber laser oscillator (invited)[J]. Infrared and Laser Engineering, 2022, 51(6): 20210879. (in Chinese) doi: 10.3788/IRLA20210879 [12] 孙殷宏. 高功率窄线宽光纤 器理论和实验研究[D]. 北京: 中国工程物理研究院, 2016.SUN Y H. Theoretical and experimental research on high power narrow linewidth fiber laser[D]. Beijing: China Academy of Engineering Physics, 2016. (in Chinese) [13] 来文昌, 马鹏飞, 肖虎, 等. 高功率窄线宽光纤 技术[J]. 强 与粒子束,2020,32(12):121001.LAI W CH, MA P F, XIAO H, et al. High-power narrow-linewidth fiber laser technology[J]. High Power Laser and Particle Beams, 2020, 32(12): 121001. (in Chinese) [14] 郑也, 李磐, 朱占达, 等. 高功率窄线宽光纤 器研究进展[J]. 与光电子学进展,2018,55(8):080002.ZHENG Y, LI P, ZHU ZH D, et al. Progress in high-power narrow-linewidth fiber lasers[J]. Laser & Optoelectronics Progress, 2018, 55(8): 080002. (in Chinese) [15] 查从文. 高功率窄线宽光纤 器自脉冲机理及其抑制研究[D]. 北京: 中国工程物理研究院, 2018.ZHA C W. Mechanism and suppression of self pulsation in high power narrow linewidth fiber lasers[D]. Beijing: China Academy of Engineering Physics, 2018. (in Chinese) [16] 郑也, 倪庆乐, 张琳, 等. 受激拉曼散射对高功率 传输特性影响研究[J]. 中国 ,2021,48(7):0701005. doi: 10.3788/CJL202148.0701005ZHENG Y, NI Q L, ZHANG L, et al. Influence of stimulated Raman scattering on propagation properties of high-power laser[J]. Chinese Journal of Lasers, 2021, 48(7): 0701005. (in Chinese) doi: 10.3788/CJL202148.0701005 [17] ZHENG Y, LIU X X, HE M, et al. Investigation on the thermal blooming effect in a high power spectral beam combining fiber laser system[J]. Applied Optics, 2022, 61(4): 954-959. doi: 10.1364/AO.447850 [18] HUANG ZH H, LIANG X B, LI CH Y, et al. Spectral broadening in high-power Yb-doped fiber lasers employing narrow-linewidth multilongitudinal-mode oscillators[J]. Applied Optics, 2016, 55(2): 297-302. doi: 10.1364/AO.55.000297 [19] 王岩山, 冯昱骏, 彭万敬, 等. 近衍射极限高消光比窄线宽保偏光纤 输出功率突破5 kW[J]. 强 与粒子束,2022,34(11):112002.WANG Y SH, FENG Y J, PENG W J, et al. 5 kW Near diffraction limit high extinction ratio narrow linewidth polarization maintaining fiber laser[J]. High Power Laser and Particle Beams, 2022, 34(11): 112002. (in Chinese) [20] 刘广柏, 杨依枫, 雷敏, 等. 1.5kW近衍射极限全光纤窄带超荧光光源[J]. 中国 ,2015,42(12):1202009. doi: 10.3788/CJL201542.1202009LIU G B, YANG Y F, LEI M, et al. 1.5 kW near-diffraction-limited narrowband all-fiber superfluorescent source[J]. Chinese Journal of Lasers, 2015, 42(12): 1202009. (in Chinese) doi: 10.3788/CJL201542.1202009 [21] 许将明. 高功率随机光纤 及其时频特性研究[D]. 长沙: 国防科技大学, 2018.XU J M. The investigation of high power random fiber laser and the respected time-frequency characteristics[D]. Changsha: National University of Defense Technology, 2018. (in Chinese) [22] HUANG Y SH, YAN P, WANG Z H, et al. 2.19 kW narrow linewidth FBG-based MOPA configuration fiber laser[J]. Optics Express, 2019, 27(3): 3136-3145. doi: 10.1364/OE.27.003136 [23] WANG Y SH, MA Y, PENG W J, et al. 2.4 kW, narrow-linewidth, near-diffraction-limited all-fiber laser based on a one-stage master oscillator power amplifier[J]. Laser Physics Letters, 2020, 17(1): 015102. doi: 10.1088/1612-202X/ab5c88 [24] WANG W L, LENG J Y, GAO Y, et al. Influence of temporal characteristics on the power scalability of the fiber amplifier[J]. Laser Physics, 2015, 25(3): 035101. doi: 10.1088/1054-660X/25/3/035101 [25] TSANG Y H, KING T A, KO D K, et al. Output dynamics and stabilisation of a multi-mode double-clad Yb-doped silica fibre laser[J]. Optics Communications, 2006, 259(1): 236-241. doi: 10.1016/j.optcom.2005.08.040 [26] BOCK V, LIEM A, SCHREIBER T, et al. Explanation of stimulated Raman scattering in high power fiber systems[J]. Proceedings of SPIE, 2018, 10512: 105121F. [27] BRUNET F, TAILLON Y, GALARNEAU P, et al. A simple model describing both self-mode locking and sustained self-pulsing in ytterbium-doped ring fiber lasers[J]. Journal of Lightwave Technology, 2005, 23(6): 2131-2138. doi: 10.1109/JLT.2005.849947 [28] 徐海洋. 高功率光纤 器中自脉冲效应的产生及其抑制研究[D]. 长沙: 国防科技大学, 2018.XU H Y. Dynamics and suppression of self-pulsing in high-power fiber lasers[D]. Changsha: National University of Defense Technology, 2018. (in Chinese) [29] UPADHYAYA B N, CHAKRAVARTY U, KURUVILLA A, et al. Self-pulsing characteristics of a high-power single transverse mode Yb-doped CW fiber laser[J]. Optics Communications, 2010, 283(10): 2206-2213. doi: 10.1016/j.optcom.2010.01.038 [30] UPADHYAYA B N, KURUVILLA A, CHAKRAVARTY U, et al. Effect of laser linewidth and fiber length on self-pulsing dynamics and output stabilization of single-mode Yb-doped double-clad fiber laser[J]. Applied Optics, 2010, 49(12): 2316-2325. doi: 10.1364/AO.49.002316 [31] LEE H, AGRAWAL G P. Impact of self-phase modulation on instabilities in fiber lasers[J]. IEEE Journal of Quantum Electronics, 2010, 46(12): 1732-1738. doi: 10.1109/JQE.2010.2063416 [32] WANG Y, MARTINEZ-RIOS A, PO H. Analysis of a Q-switched ytterbium-doped double-clad fiber laser with simultaneous mode locking[J]. Optics Communications, 2003, 224(1-3): 113-123. doi: 10.1016/S0030-4018(03)01722-X [33] LE BOUDEC P, FRANCOIS P L, DELEVAQUE E, et al. Influence of ion pairs on the dynamical behaviour of Er3+-doped fibre lasers[J]. Optical and Quantum Electronics, 1993, 25(8): 501-507. doi: 10.1007/BF00308305 [34] RANGEL-ROJO R, MOHEBI M, TENTORI-SANTA-CRUZ D. Onset of self-pulsing behavior in an Er-doped fiber laser[J]. Proceedings of SPIE, 1996, 2730: 340-343. doi: 10.1117/12.231092 [35] 赵翔. 多单频高功率光纤 放大器理论和实验研究[D]. 北京: 中国科学院大学, 2018.ZHAO X. Theoretical and experimental research on multiple single frequency high power fiber laser amplifiers[D]. Beijing: University of Chinese Academy of Sciences, 2018. (in Chinese) [36] GUAN W, MARCIANTE J R. Complete elimination of self-pulsations in dual-clad ytterbium-doped fiber lasers at all pumping levels[J]. Optics Letters, 2009, 34(6): 815-817. doi: 10.1364/OL.34.000815 [37] LEE J S, KIM J W. Suppression of self-pulsing in Yb fibre lasers coupled with external Fabry-Pérot cavity[J]. Electronics Letters, 2014, 50(9): 695-697. doi: 10.1049/el.2014.0530 [38] 赵翔, 郑也, 柏刚, 等. 全光纤化自脉冲抑制的连续稳定运转掺镱光纤 器[J]. 红外,2017,38(3):12-16.ZHAO X, ZHENG Y, BAI G, et al. Continuously and stably operative Yb-doped fiber laser suppressed by all-fiberized self-pulsing[J]. Infrared, 2017, 38(3): 12-16. (in Chinese) [39] LEE J, JEONG H, KIM J W. Self-pulsing-free continuous-wave operation of an all-fiberized Yb fiber laser[J]. Japanese Journal of Applied Physics, 2015, 54(7): 072701. doi: 10.7567/JJAP.54.072701 [40] 唐健峰. 线型腔光纤 器线宽压窄技术研究[D]. 长沙: 国防科学技术大学, 2015.TANG J F. The research of linewidth narrowing technique of linear cavity fiber laser[D]. Changsha: National University of Defense Technology, 2015. (in Chinese) [41] 陆俊军, 陈淑芬, 白杨. 光纤复合环形腔单模 器的研究[J]. 光学技术,2005,31(2):212-213.LU J J, CHEN SH F, BAI Y. Study on single-mode compound-ring fiber laser[J]. Optical Technique, 2005, 31(2): 212-213. (in Chinese) [42] LOH W H, DE SANDRO J P. Suppression of self-pulsing behavior in erbium-doped fiber lasers with resonant pumping: experimental results[J]. Optics Letters, 1996, 21(18): 1475-1477. doi: 10.1364/OL.21.001475 [43] HIDEUR A, CHARTIER T, ÖZKUL C, et al. Dynamics and stabilization of a high power side-pumped Yb-doped double-clad fiber laser[J]. Optics Communications, 2000, 186(4-6): 311-317. doi: 10.1016/S0030-4018(00)01066-X [44] THEEG T, SAYINC H, NEUMANN J, et al. All-fiber counter-propagation pumped single frequency amplifier stage with 300-W output power[J]. IEEE Photonics Technology Letters, 2012, 24(20): 1864-1867. doi: 10.1109/LPT.2012.2217487 [45] TAO R M, MA P F, WANG X L, et al. Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers[J]. Laser Physics Letters, 2017, 14(2): 025002. doi: 10.1088/1612-202X/aa4f8e [46] HUANG Y SH, XIAO Q R, LI D, et al. 3 kW narrow linewidth high spectral density continuous wave fiber laser based on fiber Bragg grating[J]. Optics & Laser Technology, 2021, 133: 106538. [47] WU Y L, HUANG Y SH, WANG Z H, et al. Spectrum broadening suppression for kW-class narrow linewidth FBG-based fiber laser[C]. CLEO: Science and Innovations 2021, Optica Publishing Group, 2021: SM4K. 2. [48] 楚秋慧, 郭超, 颜冬林, 等. 高功率窄线宽光纤 器的研究进展[J]. 强 与粒子束,2020,32(12):121004.CHU Q H, GUO CH, YAN D L, et al. Recent progress of high power narrow linewidth fiber laser[J]. High Power Laser and Particle Beams, 2020, 32(12): 121004. (in Chinese) [49] 王蒙. 倾斜光纤光栅研制及大功率光纤 中应用研究[D]. 长沙: 国防科技大学, 2018.WANG M. Fabrication of tilted fiber Bragg grating and its application in high-power fiber laser[D]. Changsha: National University of Defense Technology, 2018. (in Chinese) [50] TIAN X, GAO CH H, WANG CH W, et al. 2.58 kw narrow linewidth fiber laser based on a compact structure with a chirped and tilted fiber Bragg grating for Raman suppression[J]. Photonics, 2021, 8(12): 532. doi: 10.3390/photonics8120532 [51] ZHANG S, ZHANG W R, JIANG M, et al. Suppressing stimulated Raman scattering by adopting a composite cavity in a narrow linewidth fiber oscillator[J]. Applied Optics, 2021, 60(20): 5984-5989. doi: 10.1364/AO.430054 [52] 田鑫, 饶斌裕, 王蒙, 等. 基于简单MOPA结构实现4.45 kW近单模窄线宽 输出[J]. 中国 ,2022,49(13):1316001.TIAN X, RAO B Y, WANG M, et al. Realizing 4.45 kW near single mode narrow linewidth laser output based on a simple MOPA structure[J]. Chinese Journal of Lasers, 2022, 49(13): 1316001. (in Chinese) [53] 田鑫, 饶斌裕, 王蒙, 等. 简单MOPA结构窄线宽 突破5 kW近单模输出[J]. 强 与粒子束,2022,34(12):121002. doi: 10.11884/HPLPB202234.220267TIAN X, RAO B Y, WANG M, et al. 5 kW near single mode output of narrow linewidth laser with simple MOPA structure[J]. High Power Laser and Particle Beams, 2022, 34(12): 121002. (in Chinese) doi: 10.11884/HPLPB202234.220267 [54] WANG Y SH, KE W W, PENG W J, et al. 3 kW, 0.2 nm narrow linewidth linearly polarized all-fiber laser based on a compact MOPA structure[J]. Laser Physics Letters, 2020, 17(7): 075101. doi: 10.1088/1612-202X/ab8e42 [55] 王岩山, 王珏, 常哲, 等. 基于简单MOPA结构实现3.08 kW全光纤窄线宽线偏振 输出[J]. 强 与粒子束,2020,32(1):011006.WANG Y SH, WANG J, CHANG ZH, et al. Output of 3.08 kW narrow linewidth linearly polarized all-fiber laser based on a simple MOPA structure[J]. High Power Laser and Particle Beams, 2020, 32(1): 011006. (in Chinese) [56] XU Y, SHENG Q, WANG P, et al. 2.4 kW 1045 nm narrow-spectral-width monolithic single-mode CW fiber laser by using an FBG-based MOPA configuration[J]. Applied Optics, 2021, 60(13): 3740-3746. doi: 10.1364/AO.420708 [57] DU SH SH, FU G H, QI T CH, et al. 3.3 kW narrow linewidth FBG-based MOPA configuration fiber laser with near-diffraction-limited beam quality[J]. Optical Fiber Technology, 2022, 73: 103011. doi: 10.1016/j.yofte.2022.103011 [58] ZHENG Y H, HAN ZH G, LI Y L, et al. 3.1 kW 1050 nm narrow linewidth pumping-sharing oscillator-amplifier with an optical signal-to-noise ratio of 45.5 dB[J]. Optics Express, 2022, 30(8): 12670-12683. doi: 10.1364/OE.456856 [59] HEIDARIAZAR A, LATIFI H, LOTFOLLAHI M, et al. Experimental study of spectral broadening in kW-level narrow linewidth FBG-based fiber amplifiers under different pumping configurations[J]. Optics Continuum, 2022, 1(4): 896-908. doi: 10.1364/OPTCON.453133