Rapid wide dynamic non-uniformity correction algorithm for infrared radiation measurement system
-
摘要:
本文针对红外辐射测量系统需要积分时间连续变化的需求,提出一种快速宽动态的非均匀性校正算法。该算法考虑了积分时间效应和光学系统杂散辐射的影响,并利用25 mm口径的制冷型中波红外辐射特性测量系统进行试验验证。将本文所提算法与经典算法进行对比,结果表明,校正效率较传统非均匀性校正算法提高了3.4倍。本文还利用剩余残差评价原始图像以及两种算法的图像校正效果,利用多个积分时间(0.6 ms,3 ms和3.5 ms)模拟连续变化的积分。结果显示本文算法在各个积分时间下剩余残差均表现稳定且校正图像都具有良好的校正效果。
Abstract:In this paper, a rapid and wide dynamic non-uniformity correction algorithm is proposed for the requirement of continuous change of integration time in infrared radiation measurement system. The algorithm considers the impact of integration time effect and stray radiation of the optical system. The experimental verification was conducted by employing cooled mid-wave infrared radiation characteristic measurement system with a 25 mm aperture. The correction efficiency of the classical algorithm and the proposed algorithm are compared. The results indicate that the proposed algorithm is 3.4 times more efficient than the traditional non-uniformity correction algorithm. On the above basis, we evaluate the effect of the two algorithms on the image correction using residual non-uniformity. Multiple integration times (0.6 ms, 3 ms and 3.5 ms) are used to simulate the continuous change of integration. The results indicate that the residual non-uniformity of the proposed algorithm is consistent and the image has been effectively corrected.
-
Key words:
- infrared imaging /
- focal plane array /
- radiation calibration /
- radiation measurement
-
图 11 不同积分时间下不同算法的校正效果比较。(a)t=3 ms;(b)t=3.1 ms;(c)t=3.5 ms。(i)原始图像;(ii)传统NUC算法结果;(iii)本文所提NUC算法结果
Figure 11. Comparison of calibration effects by different algorithms with different integration times. (a) t=3 ms; (b) t=3.1 ms; (c) t=3.5 ms. (i) Raw image; (ii) traditional NUC algorithm results; (iii) the proposed NUC algorithm results
表 1 系统的基本参数
Table 1. Basic parameters of the proposed infrared system
Parameter Value Response band/μm 3.7~4.8 Pixel numbers 320×256 Pixel size/μm 30 NETD/mK 15 Number resolution (bit) 14 Cooled temperature/K 77 Focal length/mm 50 F/# 2 表 2 辐射定标参数的平均值
Table 2. Average value of radiometric calibration parameters
Parameters Value $ \overline {{R_n}} $ 573 $ \overline {{d_t}} $ 192 $ \overline {{d_{{{in}}}}} $ 1251 -
[1] OCHS M, SCHULZ A, BAUER H J. High dynamic range infrared thermography by pixelwise radiometric self calibration[J]. Infrared Physics & Technology, 2010, 53(2): 112-119. [2] JI J K, YOON J R, CHO K. Nonuniformity correction scheme for an infrared camera including the background effect due to camera temperature variation[J]. Optical Engineering, 2000, 39(4): 936-940. doi: 10.1117/1.602452 [3] 霍晓江, 郭肇敏, 张志恒, 等. 基于积分时间的IRFPA非均匀性校正方法研究[J]. 红外与金宝搏188软件怎么用 工程,2008,37(S2):604-607.HUO X J, GUO ZH M, ZHANG ZH H, et al. Research on nonuniformity correction of IRFPA based on integration time[J]. Infrared and Laser Engineering, 2008, 37(S2): 604-607. (in Chinese) [4] 冷寒冰, 汤心溢, 彭鼎祥. 基于积分时间调整的红外焦平面阵列非均匀校正算法研究[J]. 红外与毫米波学报,2007,26(4):246-250.LENG H B, TANG X Y, PENG D X. Research on nonuniformity correction of IRFPA based on integral time adjust[J]. Journal of Infrared and Millimeter Waves, 2007, 26(4): 246-250. (in Chinese) [5] 陈世伟, 杨小冈, 张胜修, 等. 基于变积分时间的红外焦平面非均匀性校正算法研究[J]. 光子学报,2013,42(4):475-479. doi: 10.3788/gzxb20134204.0475CHEN SH W, YANG X G, ZHANG SH X, et al. Research on nonuniformity correction algorithm of IRFPA based on adjusting integral time[J]. Acta Photonica Sinica, 2013, 42(4): 475-479. (in Chinese) doi: 10.3788/gzxb20134204.0475 [6] HUO L J, ZHOU D B, WANG D J, et al. Staircase-scene-based nonuniformity correction in aerial point target detection systems[J]. Applied Optics, 2016, 55(25): 7149-7156. doi: 10.1364/AO.55.007149 [7] ZUO CH, CHEN Q, GU G H, et al. New temporal high-pass filter nonuniformity correction based on bilateral filter[J]. Optical Review, 2011, 18(2): 197-202. doi: 10.1007/s10043-011-0042-y [8] 李周, 乔彦峰, 常松涛, 等. 宽动态范围红外辐射测量系统快速定标算法[J]. 红外与金宝搏188软件怎么用 工程,2017,46(6):0617003. doi: 10.3788/IRLA201746.0617003LI ZH, QIAO Y F, CHANG S T, et al. High-speed calibration algorithm for wide dynamic range infrared radiometric system[J]. Infrared and Laser Engineering, 2017, 46(6): 0617003. (in Chinese) doi: 10.3788/IRLA201746.0617003 [9] MOONEY J M, SHEPPARD F D, EWING W S, et al. Responsivity nonuniformity limited performance of infrared staring cameras[J]. Optical Engineering, 1989, 28(11): 281151. [10] 李周. 地基靶场红外辐射特性测量系统宽动态辐射测量研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2018.LI ZH. Research on ground-based infrared characteristics measurement systems in wide dynamic range radiometry[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2018. (in Chinese) [11] JIN Y, JIANG J, ZHANG G J. Three-step nonuniformity correction for a highly dynamic intensified charge-coupled device star sensor[J]. Optics Communications, 2012, 285(7): 1753-1758. doi: 10.1016/j.optcom.2011.12.043 [12] 李周, 李铭扬, 余毅, 等. 基于二次修正提高宽动态红外辐射测量精度[J]. 红外与金宝搏188软件怎么用 工程,2020,49(10):20200142.LI ZH, LI M Y, YU Y, et al. Improvement of wide dynamic infrared radiation measurement accuracy based on dual correction[J]. Infrared and Laser Engineering, 2020, 49(10): 20200142. (in Chinese) [13] CHANG S T, ZHANG Y Y, SUN ZH Y, et al. Method to remove the effect of ambient temperature on radiometric calibration[J]. Applied Optics, 2014, 53(27): 6274-6279. doi: 10.1364/AO.53.006274 [14] MONTANARO M, LUNSFORD A, TESFAYE Z, et al. Radiometric calibration methodology of the Landsat 8 thermal infrared sensor[J]. Remote Sensing, 2014, 6(9): 8803-8821. doi: 10.3390/rs6098803 [15] SUN ZH Y, CHANG S T, ZHU W. Radiometric calibration method for large aperture infrared system with broad dynamic range[J]. Applied Optics, 2015, 54(15): 4659-4666. doi: 10.1364/AO.54.004659 [16] CAO Y P, TISSE C L. Single-image-based solution for optics temperature-dependent nonuniformity correction in an uncooled long-wave infrared camera[J]. Optics Letters, 2014, 39(3): 646-648. doi: 10.1364/OL.39.000646 [17] ZHOU D B, WANG D J, HUO L J, et al. Scene-based nonuniformity correction for airborne point target detection systems[J]. Optics Express, 2017, 25(13): 14210-14226. doi: 10.1364/OE.25.014210 [18] NUGENT P W, SHAW J A, PUST N J. Radiometric calibration of infrared imagers using an internal shutter as an equivalent external blackbody[J]. Optical Engineering, 2014, 53(12): 123106. doi: 10.1117/1.OE.53.12.123106 [19] WOLF A, REDLICH R, FIGUEROA M, et al. On-line nonuniformity and temperature compensation of uncooled IRFPAs using embedded digital hardware[J]. Proceedings of SPIE, 2013, 8868: 88680H. doi: 10.1117/12.2024241 [20] TORRES S N, PEZOA J E, HAYAT M M. Scene-based nonuniformity correction for focal plane arrays by the method of the inverse covariance form[J]. Applied Optics, 2003, 42(29): 5872-5881. doi: 10.1364/AO.42.005872 [21] KIM S. Two-point correction and minimum filter-based nonuniformity correction for scan-based aerial infrared cameras[J]. Optical Engineering, 2012, 51(10): 106401. doi: 10.1117/1.OE.51.10.106401