留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进鲸鱼优化算法的壁面红外反射特性求解

张潞 樊金浩 鲁宇轩 张磊 傅莉

张潞, 樊金浩, 鲁宇轩, 张磊, 傅莉. 改进鲸鱼优化算法的壁面红外反射特性求解[J]. , 2024, 17(3): 595-604. doi: 10.37188/CO.2023-0095
引用本文: 张潞, 樊金浩, 鲁宇轩, 张磊, 傅莉. 改进鲸鱼优化算法的壁面红外反射特性求解[J]. , 2024, 17(3): 595-604. doi: 10.37188/CO.2023-0095
ZHANG LU, FAN Jin-hao, LU Yu-xuan, ZHANG Lei, FU Li. Infrared reflection characteristics of the wall solved by improved whale optimization algorithm[J]. Chinese Optics, 2024, 17(3): 595-604. doi: 10.37188/CO.2023-0095
Citation: ZHANG LU, FAN Jin-hao, LU Yu-xuan, ZHANG Lei, FU Li. Infrared reflection characteristics of the wall solved by improved whale optimization algorithm[J]. Chinese Optics, 2024, 17(3): 595-604. doi: 10.37188/CO.2023-0095

改进鲸鱼优化算法的壁面红外反射特性求解

基金项目: 国家自然科学基金资助项目(No. 61074090);辽宁省教育厅系列项目(No. JYT2020107)
详细信息
    作者简介:

    张 潞(1972—),女,辽宁西丰人,硕士,沈阳航空航天大学讲师,主要研究方向为无线网络安全、密码学、飞行器隐身测试与智能控制等。E-mail:1046094731@qq.com

    傅 莉(1968—),女,辽宁海城人,博士,教授,主要研究方向飞行器隐身测试与智能控制。E-mail:ffulli@163.com

  • 中图分类号: TN219

Infrared reflection characteristics of the wall solved by improved whale optimization algorithm

Funds: Supported by National Natural Science Foundation of China (No. 61074090); Liaoning Provincial Department of Education Series Projects (No. JYT2020107)
More Information
  • 摘要:

    壁面的红外反射特性由双向反射分布函数(BRDF)表征和求解。目前BRDF测量需要大量实验数据,同时存在精度不高的问题。通过构建壁面反射特性测试平台,使用MR170型傅立叶红外光谱辐射计获取2~15 μm波段下入射角度和各个反射角度的目标辐射亮度。针对隐身目标,应用RBF网络对3~5 μm以及8~14 μm波段的辐射亮度曲线进行拟合,排除大气干扰,进而求解出上述两个波段隐身目标的BRDF值。为了解决BRDF模型精度不高的问题,提出了改进的鲸鱼优化算法(IWOA),对BRDF模型参数进行反演,并设计了基于BRDF的反射率求解方法。IWOA对BRDF计算模型参数反演有良好的效果。根据反射法,应用所得到的BRDF数据求解得到的反射率为0.5496,相对误差为6.17%,满足工程需求。

     

  • 图 1  不同介质表面反射特性示意图

    Figure 1.  Schematic diagram of the surface reflection properties of the different media

    图 2  BRDF计算原理图

    Figure 2.  Schematic diagram of the BRDF calculations

    图 3  反射幅亮度测量系统示意图

    Figure 3.  Schematic diagram of the radiance measurement system

    图 4  3~5 μm波段反射亮度及BRDF测量值

    Figure 4.  Reflection brightness and BRDF measurements in 3~5 μm bands

    图 5  8~14 μm反射亮度及BRDF测量值

    Figure 5.  Reflection brightness and BRDF measurements in 8~14 μm bands

    图 6  座头鲸螺旋上升捕食方法示意图

    Figure 6.  Schematic diagram of the humpback whale's ascending spiral predation method

    图 7  IWOA算法流程图

    Figure 7.  IWOA algorithm flow chart

    图 8  3~5 μm波段IWOA模型改进效果图

    Figure 8.  Improved effect of the IWOA model in the 3~5 μm band

    图 9  3~5 μm波段IWOA模型反演结果对比

    Figure 9.  Comparison of the inversion results of the IWOA model in the 3~5 μm band

    图 10  8~14 μm波段IWOA模型反演结果对比

    Figure 10.  Comparison of the inversion results of the IWOA model in the 8~14 μm band

    图 11  3~5 μm波段3种算法反演结果与真实值对比

    Figure 11.  Comparison of the inversion results of three algorithms and actual values in the 3~5 μm band

    图 12  8~14 μm波段3种算法反演结果与真实值对比

    Figure 12.  Comparison of the inversion results of three algorithms and actual values in the 8~14 μm band

    图 13  3~5 μm波段反射特性曲线

    Figure 13.  Reflection characteristic curve in 3~5 μm bands

    图 14  8~14 μm波段反射特性曲线

    Figure 14.  Reflection characteristic curve in 8~14 μm bands

    图 15  光源垂直入射目标壁面的反射亮度包线

    Figure 15.  The reflected brightness envelope when the light source incidents vertically on the wall

    表  1  误差计算结果

    Table  1.   Error calculation results

    误差函数 3~5 μm
    IWOA GA PSO
    MAE(10−3) 4.4 8 7.5
    R2 0.9828 0.9494 0.9606
    8~14 μm
    MAE(10−3) 6.1 10.3 9.8
    R2 0.9797 0.9369 0.9574
    下载: 导出CSV
    Baidu
  • [1] NICODEMUS F E. Reflectance nomenclature and directional reflectance and emissivity[J]. Applied Optics, 1970, 9(6): 1474-1475. doi: 10.1364/AO.9.001474
    [2] 宿德志, 刘亮, 吴世永, 等. 辐射耦合效应对目标红外偏振特性的影响[J]. 中国光学(中英文),2023,16(2):318-328. doi: 10.37188/CO.2022-0035

    SU D ZH, LIU L, WU SH Y, et al. Influence of radiation coupling effect on polarization characteristics of targets[J]. Chinese Optics, 2023, 16(2): 318-328. doi: 10.37188/CO.2022-0035
    [3] SCHLICK C. A customizable reflectance model for everyday rendering[C]. Proceedings of the Fourth Eurographics Workshop on Rendering, 1993.
    [4] PHONG B T. Illumination for computer generated pictures[J]. Communications of the ACM, 1975, 18(6): 311-317. doi: 10.1145/360825.360839
    [5] COOK R L, TORRANCE K E. A reflectance model for computer graphics[C]. Proceedings of the 8th Annual Conference on Computer Graphics and Interactive Techniques, ACM, 1981: 307-316,doi: 10.1145/800224.806819.
    [6] 李铁, 王航宇, 王宏军. 目标表面BRDF统计建模中的遗传模拟退火算法[J]. 量子电子学报,2008,25(4):489-492. doi: 10.3969/j.issn.1007-5461.2008.04.019

    LI T, WANG H Y, WANG H J. Application of genetic simulated annealing algorithm in BRDF statistical modelling[J]. Chinese Journal of Quantum Electronics, 2008, 25(4): 489-492. doi: 10.3969/j.issn.1007-5461.2008.04.019
    [7] 吴振森, 谢东辉, 谢品华, 等. 粗糙表面 散射统计建模的遗传算法[J]. 光学学报,2002,22(8):897-901. doi: 10.3321/j.issn:0253-2239.2002.08.001

    WU ZH S, XIE D H, XIE P H, et al. Genetic algorithm for statistical modeling of laser scattering on rough surface[J]. Acta Optica Sinica, 2002, 22(8): 897-901. doi: 10.3321/j.issn:0253-2239.2002.08.001
    [8] 杨玉峰, 吴振森, 曹运华. 一种实用型粗糙面六参数双向反射分布函数模型[J]. 光学学报,2012,32(2):0229001. doi: 10.3788/AOS201232.0229001

    YANG Y F, WU ZH S, CAO Y H. Practical six-parameter bidirectional reflectance distribution function model for rough surface[J]. Acta Optica Sinica, 2012, 32(2): 0229001. (in Chinese). doi: 10.3788/AOS201232.0229001
    [9] 杨敏, 方勇华, 吴军, 等. 基于Kubelka-Munk理论的涂层表面多参量偏振双向反射分布函数模型[J]. 光学学报,2018,38(1):0126002. doi: 10.3788/AOS201838.0126002

    YANG M, FANG Y H, WU J, et al. Multiple-component polarized bidirectional reflectance distribution function model for painted surfaces based on Kubelka-Munk theory[J]. Acta Optica Sinica, 2018, 38(1): 0126002. (in Chinese). doi: 10.3788/AOS201838.0126002
    [10] 李明哲, 赵继广, 杨帆. 基于统计与遗传算法的Cook-Torrance模型研究[J]. 装备学院学报,2016,27(1):116-121. doi: 10.3783/j.issn.2095-3828.2016.01.024

    LI M ZH, ZHAO J G, YANG F. Analysis on cook-Torrance model based on genetic algorithm and statistical method[J]. Journal of Equipment Academy, 2016, 27(1): 116-121. doi: 10.3783/j.issn.2095-3828.2016.01.024
    [11] 孙建平, 齐宏, 王申领, 等. 随机惯性权重微粒群算法的BRDF参数反演[J]. 杂志,2021,42(2):5-9. doi: 10.14016/j.cnki.jgzz.2021.02.005

    SUN J P, QI H, WANG SH L, et al. BRDF parameter inversion based on the stochastic inertia weight particle swarm optimization algorithm[J]. Laser Journal, 2021, 42(2): 5-9. doi: 10.14016/j.cnki.jgzz.2021.02.005
    [12] LIU Y Y, DAI J J, ZHAO S S, et al. Optimization of five-parameter BRDF model based on hybrid GA-PSO algorithm[J]. Optik, 2020, 219: 164978. doi: 10.1016/j.ijleo.2020.164978
    [13] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. doi: 10.1016/j.advengsoft.2016.01.008
    [14] 罗一甲, 祝赫, 李潇涵, 等. 赤霞珠酿酒葡萄总酚含量的近红外光谱定量分析[J]. 光谱学与光谱分析,2021,41(7):2036-2042. doi: 10.3964/j.issn.1000-0593(2021)07-2036-07

    LUO Y J, ZHU H, LI X H, et al. Quantitative analysis of total phenol content in cabernet sauvignon grape based on near-infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2021, 41(7): 2036-2042. doi: 10.3964/j.issn.1000-0593(2021)07-2036-07
    [15] DING H Q, WU ZH Y, ZHAO L CH. Whale optimization algorithm based on nonlinear convergence factor and chaotic inertial weight[J]. Concurrency and Computation:Practice and Experience, 2020, 32(24): e5949. doi: 10.1002/cpe.5949
    [16] ADITYA SHASTRY K, SANJAY H A. A modified genetic algorithm and weighted principal component analysis based feature selection and extraction strategy in agriculture[J]. Knowledge-Based Systems, 2021, 232: 107460. doi: 10.1016/j.knosys.2021.107460
    [17] ZHANG X M, LIN Q Y. Three-learning strategy particle swarm algorithm for global optimization problems[J]. Information Sciences, 2022, 593: 289-313. doi: 10.1016/j.ins.2022.01.075
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  93
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-13
  • 修回日期:  2023-08-25
  • 录用日期:  2023-11-16
  • 网络出版日期:  2024-01-16

目录

    /

    返回文章
    返回
    Baidu
    map