留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于掩模光刻的液晶波前校正器设计与制备

杜莹 陈梅蕊 刘禹彤 曹宗新 毛红敏 李小平 孙会娟 曹召良

杜莹, 陈梅蕊, 刘禹彤, 曹宗新, 毛红敏, 李小平, 孙会娟, 曹召良. 基于掩模光刻的液晶波前校正器设计与制备[J]. , 2024, 17(2): 324-333. doi: 10.37188/CO.2023-0137
引用本文: 杜莹, 陈梅蕊, 刘禹彤, 曹宗新, 毛红敏, 李小平, 孙会娟, 曹召良. 基于掩模光刻的液晶波前校正器设计与制备[J]. , 2024, 17(2): 324-333. doi: 10.37188/CO.2023-0137
DU Ying, CHEN Mei-rui, LIU Yu-tong, CAO Zong-xin, MAO Hong-min, LI Xiao-ping, SUN Hui-juan, CAO Zhao-liang. Design and fabrication of liquid crystal wavefront corrector based on mask lithography[J]. Chinese Optics, 2024, 17(2): 324-333. doi: 10.37188/CO.2023-0137
Citation: DU Ying, CHEN Mei-rui, LIU Yu-tong, CAO Zong-xin, MAO Hong-min, LI Xiao-ping, SUN Hui-juan, CAO Zhao-liang. Design and fabrication of liquid crystal wavefront corrector based on mask lithography[J]. Chinese Optics, 2024, 17(2): 324-333. doi: 10.37188/CO.2023-0137

基于掩模光刻的液晶波前校正器设计与制备

基金项目: “十四五”江苏省重点学科资助(No. 2021135);北京联合大学科研项目资助(No. ZK70202007);吉林省科技厅重点研发项目(No. 20220203033SF)
详细信息
    作者简介:

    孙会娟(1976—),女,河南济源人,副教授,主要从事液晶器件及其光学应用方面的研究。E-mail:shjwwcnu@163.com

    曹召良(1974—),男,河南济源人,博士,教授,2008年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事液晶自适应光学系统光学设计,光学实验以及理论分析和模拟方面的研究。E-mail:caozl@usts.edu.cn

  • 中图分类号: O436

Design and fabrication of liquid crystal wavefront corrector based on mask lithography

Funds: Supported by Jiangsu Key Disciplines of the Fourteenth Five-Year Plan (No. 2021135); Research Projects of Beijing Union University(No. ZK70202007); Key R&D Projects of Jilin Provincial Department of Science and Technology(No. 20220203033SF)
More Information
  • 摘要:

    液晶波前校正器通常基于液晶显示器的工艺制备而成,因此其研制成本高、定制难度大。本文基于掩模光刻法制备液晶波前校正器,以实现液晶波前校正器的专用化、低成本研制。基于掩模光刻技术设计并制备了91像素的无源液晶驱动电极,并封装成液晶光学校正单元。设计并制备了驱动连接电路板,实现了液晶光学驱动单元和驱动电路板的匹配对接。对液晶波前校正器响应特性进行检测。结果显示,其相位调制量为5.5个波长,响应时间为224 ms。利用Zygo干涉仪进行球面波的产生和静态倾斜像差的校正。结果显示,其可以产生正负离焦波前,且对水平倾斜像差校正后,Zernike多项式中第一项的值从1.18降至0.16,校正幅度达86%,实现了像差的有效校正。本文的研究工作可为液晶波前校正器的研制提供新思路,进而拓宽其应用领域和场景。

     

  • 图 1  (a)未施加电压及(b)施加电压的液晶分子排列

    Figure 1.  Arrangement of liquid crystal molecules under the conditions (a) without applied voltage and (b) with applied voltage

    图 2  本文制备的液晶无源驱动电极。(a)驱动电极结构;(b)液晶盒封装结构;(c)电极间走线

    Figure 2.  The liquid crystal passive driving electrode prepared in this paper. (a) Structure of driving electrode; (b) packaging structure of liquid crystal cell; (c) wiring between electrodes

    图 3  驱动连接板设计图

    Figure 3.  Design drawing of the driving connection board

    图 4  (a)、(b)镀金驱动电极不同位置的显微镜照片;(c)封装的液晶盒

    Figure 4.  (a), (b) Different location pictures of gold-plated driving electrodes captured by the microscope; (c) packaged liquid crystal cell

    图 5  制备的液晶波前校正器

    Figure 5.  Fabricated liquid crystal wavefront corrector

    图 6  液晶波前校正器响应特性测试光路

    Figure 6.  Optical layout for testing the response characteristic of liquid crystal wavefront corrector

    图 7  (a)单像素驱动响应结果;(b)驱动通道与像素对应位置关系

    Figure 7.  (a) Response results with single pixel driving; (b) corresponding relationship between the driving channel and pixel position

    图 8  (a)示波器测量的光强变化曲线;(b)时间与相位关系曲线

    Figure 8.  (a) Intensity curve measured by oscilloscope; (b) phase as a function of response time

    图 9  (a)灰度级与相位关系曲线及(b)相位调制误差

    Figure 9.  (a) Phase as a function of gray level; (b) phase modulation error

    图 10  像差校正实验设备

    Figure 10.  Optical setup for aberration correction

    图 11  Zygo干涉仪的初始测量结果及产生的平面波。(a)干涉条纹;(b)原始波面;(c)相对测量波面

    Figure 11.  Initial wave measurement results by Zygo interferometer and the resulting plane wave. (a) Interference fringe, (b) initial wave surface and (c) relative measured wavefront

    图 12  正负离焦像差球面波。(a)、(b)、(c)为施加正离焦的干涉条纹、立体波面及波前;(d)、(e)、(f)为施加负离焦的干涉条纹、立体波面及波前

    Figure 12.  Positive and negative defocused aberration spherical wave. (a) Interference fringe, (b) stereoscopic wavefront and (c) two-dimensional wavefront under positive defocus; (d) interference fringe, (e) stereoscopic wavefront and (f) two-dimensional wavefront under negative defocus

    图 13  水平倾斜像差校正结果。校正前的(a)干涉条纹及(b)波前;校正后的(c)干涉条纹及(d)波前

    Figure 13.  Correction results of horizontal tilt aberration. (a) Interference fringe and (b) wavefront before correction; (c) interference fringe and (d) wavefront after correction

    图 14  校正前后泽尼克多项式系数

    Figure 14.  Zernike coefficients without and with correction

    Baidu
  • [1] SHAH S, SUBRAMANIAN S, ANUPAMA G C, et al. Towards the development of the Infrared Guide Star Catalogue for the adaptive optics observations by the Thirty Meter Telescope[J]. Proceedings of SPIE, 2022, 12185: 1218506.
    [2] WALSH S M, KARPATHAKIS S F E, MCCANN A S, et al. Demonstration of 100 Gbps coherent free-space optical communications at LEO tracking rates[J]. Scientific Reports, 2022, 12(1): 18345. doi: 10.1038/s41598-022-22027-0
    [3] KWON Y, HONG J H, KANG S, et al. Computational conjugate adaptive optics microscopy for longitudinal through-skull imaging of cortical myelin[J]. Nature Communications, 2023, 14(1): 105. doi: 10.1038/s41467-022-35738-9
    [4] BURNS S A, ELSNER A E, SAPOZNIK K A, et al. Adaptive optics imaging of the human retina[J]. Progress in Retinal and Eye Research, 2019, 68: 1-30. doi: 10.1016/j.preteyeres.2018.08.002
    [5] YANG Y Q, KANG X W, CAO L C. Robust propagation of a steady optical beam through turbulence with extended depth of focus based on spatial light modulator[J]. Journal of Physics:Photonics, 2023, 5(3): 035002. doi: 10.1088/2515-7647/acd28c
    [6] 马阎星, 吴坚, 粟荣涛, 等. 光学相控阵技术发展概述[J]. 红外与 工程,2020,49(10):20201042.

    MA Y X, WU J, SU R T, et al. Review of optical phased array techniques[J]. Infrared and Laser Engineering, 2020, 49(10): 20201042. (in Chinese)
    [7] DOU R SH, GILES M K. Closed-loop adaptive-optics system with a liquid-crystal television as a phase retarder[J]. Optics Letters, 1995, 20(14): 1583-1585. doi: 10.1364/OL.20.001583
    [8] 宣丽, 刘永军, 胡立发, 等. 一种纯位相透射式TFT液晶波前校正器的制备方法, 中国: CN1727967[P]. 2006-02-01.

    XUAN L, LIU Y J, HU L F, et al. A preparation method for pure phase transmission TFT liquid crystal wavefront corrector, CN1727967[P]. 2006-02-01.
    [9] HU L F, XUAN L, LIU Y J, et al. Phase-only liquid-crystal spatial light modulator for wave-front correction with high precision[J]. Optics Express, 2004, 12(26): 6403-6409. doi: 10.1364/OPEX.12.006403
    [10] 张健, 徐林, 吴丽莹, 等. 液晶光学相控阵可编程光束偏转研究[J]. 光子学报,2008,37(8):1497-1502. doi: 10.3390/nano12071169

    ZHANG J, XU L, WU L Y, et al. Programmable beam steering based on liquid crystal optical phased array[J]. Acta Photonica Sinica, 2008, 37(8): 1497-1502. doi: 10.3390/nano12071169
    [11] BURNS D C, UNDERWOOD I, GOURLAY J, et al. A 256×256 SRAM-XOR pixel ferroelectric liquid crystal over silicon spatial light modulator[J]. Optics Communications, 1995, 119(5-6): 623-632. doi: 10.1016/0030-4018(95)00414-4
    [12] RESLER D P, HOBBS D S, SHARP R C, et al. High-efficiency liquid-crystal optical phased-array beam steering[J]. Optics letters, 1996, 21(9): 689-691.
    [13] SERATI S A, XIA X W, MUGHAL O, et al. High-resolution phase-only spatial light modulators with submillisecond response[J]. Proceedings of SPIE, 2003, 5106: 138-145. doi: 10.1117/12.488311
    [14] 陈颖, 黄润坤, 吴頔, 等. 全球光刻胶产业现状及布局[J]. 中国集成电路,2023,32(5):22-26,65.

    CHEN Y, HUANG R K, WU D, et al. The current situation and layout of the photoresist industry[J]. China Integrated Circuit, 2023, 32(5): 22-26,65. (in Chinese)
    [15] CAO ZH L, PENG Z H, XUAN L, et al. Design and fabrication of 2 kHz nematic liquid crystal variable retarder with reflection mode[J]. Liquid Crystals, 2020, 47(6): 870-881. doi: 10.1080/02678292.2019.1686778
    [16] 杨雅淇. 双波前校正器校正畸变波前的实验研究[D]. 西安: 西安理工大学, 2022.

    YANG Y Q. Experimental research on correction of distorted wavefront by dual wavefront corrector[D]. Xi’an: Xi’an University of Technology, 2022. (in Chinese)
    [17] LOVE G D. Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator[J]. Applied Optics, 1997, 36(7): 1517-1524. doi: 10.1364/AO.36.001517
    [18] 陈梅蕊, 杜莹, 毛红敏, 等. 无源液晶光学器件的低成本驱动电路设计[J]. 液晶与显示,2022,37(12):1572-1579. doi: 10.37188/CJLCD.2022-0266

    CEHN M R, DU Y, MAO H M, et al. Design of low-cost drive circuit for passive liquid crystal optical device[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(12): 1572-1579. (in Chinese) doi: 10.37188/CJLCD.2022-0266
    [19] 李艳丽, 刘显和, 伍强. 先进光刻技术的发展历程与最新进展[J]. 与光电子学进展,2022,59(9):0922006.

    LI Y L, LIU X H, WU Q. Evolution and updates of advanced photolithography technology[J]. Laser & Optoelectronics Progress, 2022, 59(9): 0922006. (in Chinese)
    [20] CHAKER A, ALTY H R, TIAN P, et al. Nanoscale patterning of zinc oxide from zinc acetate using electron beam lithography for the preparation of hard lithographic masks[J]. ACS Applied Nano Materials, 2021, 4(1): 406-413. doi: 10.1021/acsanm.0c02756
    [21] 芦永军, 曹召良, 曲艳玲, 等. 液晶波前校正器动态位相响应特性研究[J]. 液晶与显示,2012,27(6):730-735. doi: 10.3788/YJYXS20122706.0730

    LU Y J, CAO ZH L, QU Y L, et al. Dynamic phase response of liquid crystal wavefront corrector[J]. Chinese Journal of Liquid Crystals and Displays, 2012, 27(6): 730-735. (in Chinese) d