留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于荧光强度比的毛细管液芯光纤温度传感器

张烨禹 刘婷 黄建伟 黄学智 陈明杰

张烨禹, 刘婷, 黄建伟, 黄学智, 陈明杰. 基于荧光强度比的毛细管液芯光纤温度传感器[J]. , 2024, 17(3): 528-537. doi: 10.37188/CO.2023-0160
引用本文: 张烨禹, 刘婷, 黄建伟, 黄学智, 陈明杰. 基于荧光强度比的毛细管液芯光纤温度传感器[J]. , 2024, 17(3): 528-537. doi: 10.37188/CO.2023-0160
ZHANG Ye-yu, LIU Ting, HUANG Jian-wei, HUANG Xue-zhi, CHEN Ming-jie. Capillary liquid-core optical fiber temperature sensor based on fluorescence intensity ratio[J]. Chinese Optics, 2024, 17(3): 528-537. doi: 10.37188/CO.2023-0160
Citation: ZHANG Ye-yu, LIU Ting, HUANG Jian-wei, HUANG Xue-zhi, CHEN Ming-jie. Capillary liquid-core optical fiber temperature sensor based on fluorescence intensity ratio[J]. Chinese Optics, 2024, 17(3): 528-537. doi: 10.37188/CO.2023-0160

基于荧光强度比的毛细管液芯光纤温度传感器

基金项目: 国家自然科学基金(No. 62075067,No. 61505057);华侨大学中青年教师科技创新项目(No. ZQN-PY603)
详细信息
    作者简介:

    刘 婷(1987—),女,湖北随州人,副教授,硕士生导师,2014年于清华大学获得博士学位,现为华侨大学机电与自动化学院副教授,主要从事光纤光谱传感及精密测量技术的研究。E-mail:liut14@hqu.edu.cn

  • 中图分类号: TN253

Capillary liquid-core optical fiber temperature sensor based on fluorescence intensity ratio

Funds: Supported by National Natural Science Foundation of China (No. 62075067, No. 61505057); Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (No. ZQN-PY603)
More Information
  • 摘要:

    针对现有光纤荧光温度传感探头制备复杂的问题,本文提出了一种制备简单、成本低廉且性能优异的基于毛细管液芯的光纤荧光温度传感器。首先将对温度敏感的罗丹明B和对温度不敏感的罗丹明123的混合溶液作为温敏材料封装在不锈钢毛细管中制备成传感探头,利用两者荧光发射峰强度的比值进行温度传感。之后对传感探头中混合溶液的浓度和毛细管的结构参数进行了优化,并对传感器的性能进行了测试,最终将其应用于实际生活温度检测中。实验结果表明:该传感器的温度响应范围为30~70 °C,荧光强度比与温度之间呈二次相关,拟合相关系数高达0.9984,且具有很好的准确性、重复性和稳定性,使用时间可达3个月以上,能很好地应用于对日常生活中温度的检测。该光纤荧光温度传感器在实时监测和远端探测方面具有很大的潜力。

     

  • 图 1  传感探头的制备。(a)制备流程图;(b)实物及结构参数

    Figure 1.  Preparation of sensing probe. (a) Preparation flow chart; (b) sensing probe and its parameters

    图 2  光纤温度传感器系统

    Figure 2.  Optical fiber temperature sensing system

    图 3  罗丹明溶液的浓度优化。(a)罗丹明B和(b)罗丹明123的荧光光谱;(c)罗丹明B和(d)罗丹明123的浓度优化

    Figure 3.  Concentration optimization of rhodamines. Fluorescence spectra of (a) rhodamine B and (b) rhodamine 123; concentration optimization of (c) rhodamine B and (d) rhodamine 123

    图 4  传感探头结构参数的优化。(a)温度上升光谱;(b)温度下降光谱;(c)温升温降的信号对比;(d)长度的优化;(e)外径的优化;(f)光纤浸入深度比的优化

    Figure 4.  Structure parameter optimization of sensing probe. Spectra of temperature (a) raising and (b) dropping; (c) comparison of temperature raising and dropping; optimization of (d) length, (e) outer diameter and (f) fiber insertion ratio

    图 5  传感器在不同环境下的温度响应。(a)气体,(b)液体和(c)固体环境下的温度响应光谱;(d)不同环境下的荧光强度比

    Figure 5.  Response of the sensor to temperature under different environments. Spectra of temperature response in (a) gas, (b) liquid and (c) solid environments; (d) intensity ratios under different environments

    图 6  光纤温度传感器的性能测试。(a)标定曲线;(b)准确性、(c)重复性、(d)稳定性测试结果

    Figure 6.  Performance evaluation of the optical fiber temperature sensor. (a) Calibration curve, (b) accuracy, (c) repeatability and (d) stability test results

    图 7  传感器在实际生活中的应用测试。(a)热水自然降温;(b)暖手宝的加热过程

    Figure 7.  Practical application test for the sensor. (a) Natural cooling of hot water; (b) heating process of hand warmer

    Baidu
  • [1] SHIMADA K, TAKASHIMA H, WANG R P, et al. Capacitance temperature sensor using ferroelectric (Sr0.95Ca0.05)TiO3 perovskite[J]. Ferroelectrics, 2006, 331(1): 141-145. doi: 10.1080/00150190600737701
    [2] 薛光辉, 柴敬轩. 热电偶传感器温控系统误差研究[J]. 中国测试,2019,45(9):100-104. doi: 10.11857/j.issn.1674-5124.2018100039

    XUE G H, CHAI J X. Temperature control error research based on thermocouple sensor[J]. China Measurement & Testing Technology, 2019, 45(9): 100-104. (in Chinese). doi: 10.11857/j.issn.1674-5124.2018100039
    [3] LEE J M, CHO I T, LEE J H, et al. Enhancement of temperature sensitivity for metal-insulator-semiconductor temperature sensors by using Bi2Mg2/3Nb4/3O7 film[J]. Japanese Journal of Applied Physics, 2012, 51(8R): 080206. doi: 10.1143/JJAP.51.080206
    [4] BANG J, LEE W S, PARK B, et al. Highly sensitive temperature sensor: ligand-treated Ag nanocrystal thin films on PDMS with thermal expansion strategy[J]. Advanced Functional Materials, 2019, 29(32): 1903047. doi: 10.1002/adfm.201903047
    [5] LEE Y T, CHOI W J, CHAE Y C. Resistor-based temperature sensors: a technical review[J]. IDEC Journal of Integrated Circuits and Systems, 2021, 7(1): 24-29.
    [6] YANG Z R, YUAN W H, YU CH Y. Hollow core Bragg fiber-based sensor for simultaneous measurement of curvature and temperature[J]. Sensors, 2021, 21(23): 7956. doi: 10.3390/s21237956
    [7] PENG G L, HE J, YANG SH P, et al. Application of the fiber-optic distributed temperature sensing for monitoring the liquid level of producing oil wells[J]. Measurement, 2014, 58: 130-137. doi: 10.1016/j.measurement.2014.08.012
    [8] ROMAN M, ZHU CH, O’MALLEY R J, et al. Distributed fiber-optic sensing with low bending loss based on thin-core fiber[J]. IEEE Sensors Journal, 2021, 21(6): 7672-7680. doi: 10.1109/JSEN.2021.3050702
    [9] MILIOU A. In-fiber interferometric-based sensors: overview and recent advances[J]. Photonics, 2021, 8(7): 265. doi: 10.3390/photonics8070265
    [10] ZHANG Y, LIU ZH, LI Y, et al. Electrospun fibers embedded with microcrystal for optical temperature sensing[J]. Journal of Alloys and Compounds, 2021, 855: 157410. doi: 10.1016/j.jallcom.2020.157410
    [11] YANG K, XU R, MENG Q Y, et al. Er3+/Yb3+ co-doped TeO2–ZnO–ZnF2–La2O3 glass with a high fluorescence intensity ratio for an all-fiber temperature sensor[J]. Journal of Luminescence, 2020, 222: 117145. doi: 10.1016/j.jlumin.2020.117145
    [12] KHLAIFI H, ZRELLI A, EZZEDINE T. Optical fiber sensors in border detection application: temperature, strain and pressure distinguished detection using fiber Bragg grating and fluorescence intensity ratio[J]. Optik, 2021, 229: 166257. doi: 10.1016/j.ijleo.2021.166257
    [13] 李爱武, 单天奇, 国旗, 等. 光纤法布里-珀罗干涉仪高温传感器研究进展[J]. 中国光学(中英文),2022,15(4):609-624. doi: 10.37188/CO.2021-0219

    LI A W, SHAN T Q, GUO Q, et al. Research progress of optical fiber Fabry-Perot interferometer high temperature sensors[J]. Chinese Optics, 2022, 15(4): 609-624. (in Chinese). doi: 10.37188/CO.2021-0219
    [14] ZHANG H, YE J T, WANG X L, et al. Highly reliable all-fiber temperature sensor based on the fluorescence intensity ratio (FIR) technique in Er3+/Yb3+ co-doped NaYF4 phosphors[J]. Journal of Materials Chemistry C, 2019, 7(48): 15269-15275. doi: 10.1039/C9TC05011F
    [15] REN X T, GAO J, SHI H N, et al. A flexible and portable all-fiber temperature sensor based on the upconversion luminescence of octahedral NaBi(WO4)2: Er3+/Yb3+ phosphors[J]. Dalton Transactions, 2021, 50(3): 917-925. doi: 10.1039/D0DT03762A
    [16] ZHANG M, LI A ZH, YU J B, et al. In-fiber temperature sensor based on green up-conversion luminescence in an Er3+-Yb3+ co-doped tellurite glass microsphere[J]. Optics Letters, 2019, 44(13): 3214-3217. doi: 10.1364/OL.44.003214
    [17] MAI Y F, LI B Y, ZHOU G Y, et al. Research on temperature sensor using rhodamine6G film coated microstructure optical fiber[J]. IEEE Sensors Journal, 2020, 20(1): 202-207. doi: 10.1109/JSEN.2019.2938766
    [18] LI H, ZHANG Y D, SHAO L, et al. Luminescence probe for temperature sensor based on fluorescence intensity ratio[J]. Optical Materials Express, 2017, 7(3): 1077-1083. doi: 10.1364/OME.7.001077
    [19] JIANG X F, LIN CH, HUANG Y Q, et al. Hybrid fiber optic sensor, based on the Fabry-Perot interference, assisted with fluorescent material for the simultaneous measurement of temperature and pressure[J]. Sensors (Basel), 2019, 19(5): 1097. doi: 10.3390/s19051097
    [20] ZHAO F, KIM J. The Effect of temperature on photoluminescence enhancement of quantum dots in brain slices[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(4): 2606-2609. doi: 10.1166/jnn.2017.13332
    [21] SUN S S, ZHANG J H, Wang ZH, et al. Anomalous thermally-activated NIR emission of ESIPT modulated Nd-complexes for optical fiber sensing devices[J]. Chemical Communications, 2018, 54(49): 6304-6307. doi: 10.1039/C8CC02345J
    [22] 王玉田, 胡俏丽, 石军彦. 基于荧光机理的光纤温度测量仪[J]. 光学学报,2010,30(3):655-659. doi: 10.3788/AOS20103003.0655

    WANG Y T, HU Q L, SHI J Y. Optical fiber thermometer based on fluorescence mechanism[J]. Acta Optica Sinica, 2010, 30(3): 655-659. (in Chinese). doi: 10.3788/AOS20103003.0655
    [23] ZHAO Y T, PANG CH L, WEN ZH, et al. A microfiber temperature sensor based on fluorescence lifetime[J]. Optics Communications, 2018, 426: 231-236. doi: 10.1016/j.optcom.2018.05.025
    [24] WU J, YIN X J, WANG W Y, et al. All-fiber reflecting temperature probe based on the simplified hollow-core photonic crystal fiber filled with aqueous quantum dot solution[J]. Applied Optics, 2016, 55(5): 974-978. doi: 10.1364/AO.55.000974
    [25] ZHAO Y, TONG R J, CHEN M Q, et al. Fluorescence temperature sensor based on GQDs solution encapsulated in hollow core fiber[J]. IEEE Photonics Technology Letters, 2017, 29(18): 1544-1547. doi: 10.1109/LPT.2017.2723624
    [26] 曹汇敏, 李发光, 戴乐荣, 等. 同步监测氧气和温度的新型便携式传感器[J]. 光学学报,2019,39(6):0628004. doi: 10.3788/AOS201939.0628004

    CAO H M, LI F G, DAI L R, et al. Novel portable sensor for simultaneous monitoring of oxygen and temperature[J]. Acta Optica Sinica, 2019, 39(6): 0628004. (in Chinese). doi: 10.3788/AOS201939.0628004
    [27] KUMAR R, BINETTI L, NGUYEN T H, et al. Optical fibre thermometry using ratiometric green emission of an upconverting nanoparticle-polydimethylsiloxane composite[J]. Sensors and Actuators A:Physical, 2020, 312: 112083. doi: 10.1016/j.sna.2020.112083
    [28] 李淑雅, 魏超, 赵晗, 等. 检测汞离子的比色-荧光双通道探针的设计合成及应用[J]. 分析化学,2023,51(2):204-210.

    LI SH Y, WEI CH, ZHAO H, et al. Synthesis and application of colorimetric and fluorescent dual mode probe for detection of mercury ion[J]. Chinese Journal of Analytical Chemistry, 2023, 51(2): 204-210. (in Chinese).
    [29] 侯淑华, 李仕琦, 汤立军. 新型水溶性罗丹明类荧光探针的合成及其对游离3价金属离子的识别[J]. 应用化学,2022,39(2):241-246.

    HOU SH H, LI SH Q, TANG L J. Synthesis of a novel water-soluble rhodamine-based fluorescent probe and its selective detection of free trivalent ions[J]. Chinese Journal of Applied Chemistry, 2022, 39(2): 241-246. (in Chinese).
    [30] 陈阳, 赵杰, 张嘉惠, 等. 罗丹明B-锆基金属有机框架复合材料高选择性荧光检测铁离子[J]. 分析化学,2021,49(4):642-651.

    CHEN Y, ZHAO J, ZHANG J H, et al. Integration of rhodamine b into zirconium-based metal-organic framework for selective detection of ferric ion[J]. Chinese Journal of Analytical Chemistry, 2021, 49(4): 642-651. (in Chinese).
    [31] PANCHUK-VOLOSHINA N, HAUGLAND R P, BISHOP-STEWART J, et al. Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates[J]. Journal of Histochemistry & Cytochemistry, 1999, 47(9): 1179-1788.
    [32] ZHANG T T, WANG ZH J, XIANG H J, et al. Biocompatible superparamagnetic europium-doped iron oxide nanoparticle clusters as multifunctional nanoprobes for multimodal in vivo imaging[J]. ACS Applied Materials & Interfaces, 2021, 13(29): 33850-33861.
    [33] BARRANCO A, GROENING P. Fluorescent plasma nanocomposite thin films containing nonaggregated rhodamine 6G laser dye molecules[J]. Langmuir, 2006, 22(16): 6719-6722. doi: 10.1021/la053304d
  • 加载中
图(7)
计量
  • 文章访问数:  327
  • HTML全文浏览量:  111
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-13
  • 修回日期:  2023-10-09
  • 录用日期:  2023-11-24
  • 网络出版日期:  2024-01-16

目录

    /

    返回文章
    返回
    Baidu
    map