留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向微光学元件表面形貌测量的涡旋相移数字全息技术

薛一梦 刘丙才 潘永强 房鑫萌 田爱玲 张瑞轩

薛一梦, 刘丙才, 潘永强, 房鑫萌, 田爱玲, 张瑞轩. 面向微光学元件表面形貌测量的涡旋相移数字全息技术[J]. , 2024, 17(4): 852-861. doi: 10.37188/CO.2023-0180
引用本文: 薛一梦, 刘丙才, 潘永强, 房鑫萌, 田爱玲, 张瑞轩. 面向微光学元件表面形貌测量的涡旋相移数字全息技术[J]. , 2024, 17(4): 852-861. doi: 10.37188/CO.2023-0180
XUE Yi-meng, LIU Bing-cai, PAN Yong-qiang, FANG Xin-meng, TIAN Ai-ling, ZHANG Rui-xuan. Vortex phase-shifting digital holography for micro-optical element surface topography measurment[J]. Chinese Optics, 2024, 17(4): 852-861. doi: 10.37188/CO.2023-0180
Citation: XUE Yi-meng, LIU Bing-cai, PAN Yong-qiang, FANG Xin-meng, TIAN Ai-ling, ZHANG Rui-xuan. Vortex phase-shifting digital holography for micro-optical element surface topography measurment[J]. Chinese Optics, 2024, 17(4): 852-861. doi: 10.37188/CO.2023-0180

面向微光学元件表面形貌测量的涡旋相移数字全息技术

cstr: 32171.14.CO.2023-0180
基金项目: 陕西省科技厅项目(No. 2023KXJ-066);陕西省教育厅项目(No. 23JY034);陕西省自然科学基础研究计划项目(NO.2024JC-YBMS-523)
详细信息
    作者简介:

    潘永强(1974—),男,陕西长安人,博士,教授,博士生导师,1998年、2004年于西安工业大学分别获学士、硕士学位,2009年于西安电子科技大学获理学博士学位。主要从事光学薄膜、光学检测技术等方面的研究。E-mail:pyq_867@163.com

  • 中图分类号: O438.1

Vortex phase-shifting digital holography for micro-optical element surface topography measurment

Funds: Supported by Shaanxi Provincial Science and Technology Department Project (No. 2023KXJ-066); Shaanxi Province Education Department Project (No. 23JY034); Shaanxi Provincial Natural Science Basic Research Program Project (NO.2024JC-YBMS-523)
More Information
  • 摘要:

    非接触、无损害的相移数字全息技术对微光学元件检测具有独特优势。因传统的相移数字全息技术需要对相移器进行精细控制和繁琐校准,同时其光路易受到机械振动干扰,导致全息再现像的质量降低。本文借助涡旋光特殊的相位分布,提出了一种基于涡旋相移数字全息的微光学元件表面形貌测量方法。该方法利用螺旋相位板调制涡旋相位,引入高精度相移。基于构建的涡旋相移数字全息显微实验装置,采用干涉极值法确定了相移干涉图之间的真实相移量,并对螺旋相位板的旋转角度与相移量的关系进行标定,实验验证了涡旋相移的可行性;对微透镜阵列进行了重复测量实验,将测试结果与ZYGO白光干涉仪的测试结果进行比较。结果表明:测量得到单个微透镜的平均纵向矢高为12.897 μm,平均相对误差为0.155%。所提方法可以实现对被测微光学元件表面形貌的高精度测量,具有易操作、稳定可靠、准确性高等优点。

     

  • 图 1  旋转SPP调制涡旋相位原理图

    Figure 1.  Schematic diagram of rotating SPP modulated vortex phase

    图 2  涡旋相移数字全息显微成像原理图

    Figure 2.  Schematic diagram of vortex phase-shifting digital holographic microscopy

    图 3  涡旋相移数字全息显微成像实验装置

    Figure 3.  Experimental setup for vortex phase-shifting digital holographic microscopy

    图 4  四步相移全息图

    Figure 4.  Four-step phase-shifting holograms

    图 5  微透镜阵列的4幅相移全息图

    Figure 5.  Four phase-shifting holograms of micro-lens arrays

    图 6  微透镜阵列相位处理结果

    Figure 6.  Results of micro-lens array phase processing

    图 7  单个微透镜截面线选取

    Figure 7.  Individual micro-lens section line selection

    图 8  微透镜阵列的相移全息图

    Figure 8.  Phase-shifting holograms for micro-lens arrays

    图 9  仿真测量结果

    Figure 9.  Simulation measurement results

    图 10  微透镜矢高与旋转角度误差之间的关系曲线

    Figure 10.  Relationship curves between micro-lens vector height and rotational angle error

    表  1  相移全息图的实际相移量和相移误差

    Table  1.   Actual phase shift and phase shift error in phase shift holograms

    No. Theoretical Phase
    Shift/rad
    Actual Phase
    Shift/rad
    Phase Shift
    Error/rad
    1 0 0 0
    2 0.5π 0.4992π −0.0008π
    3 π 0.9963π −0.0037π
    4 1.5π 1.4876π −0.0024π
    下载: 导出CSV

    表  2  测量微透镜阵列纵向矢高实验结果

    Table  2.   Experimental results of the measured longitudinal vector height of micro-lens arrays

    No.Vertical height of single
    micro-lens/μm
    Absolute
    error/μm
    Relative
    error/%
    112.9060.0110.085
    212.9170.0000.000
    312.9200.0030.023
    412.8980.0190.147
    512.9210.0040.031
    612.8750.0420.325
    712.8970.0200.155
    812.8600.0570.441
    912.8710.0460.356
    1012.9030.0140.108
    下载: 导出CSV
    Baidu
  • [1] 王丹艺, 薛常喜, 李闯, 等. 基于微透镜阵列的电子内窥镜光学系统设计[J]. 光学学报,2018,38(2):0222003. doi: 10.3788/AOS201838.0222003

    WANG D Y, XUE CH X, LI CH, et al. Design of electronic endoscope optical system based on microlens array[J]. Acta Optica Sinica, 2018, 38(2): 0222003. (in Chinese). doi: 10.3788/AOS201838.0222003
    [2] 李恒, 邵永红, 王岩, 等. 基于微透镜阵列和振镜扫描的光谱分辨多焦点多光子显微技术[J]. 中国 ,2010,37(5):1240-1244. doi: 10.3788/CJL20103705.1240

    LI H, SHAO Y H, WANG Y, et al. Spectrally resolved multifocal multiphoton microscopy using microlens array and galvo mirror scanning[J]. Chinese Journal of Lasers, 2010, 37(5): 1240-1244. (in Chinese). doi: 10.3788/CJL20103705.1240
    [3] LIU G, SCOTT P D. Phase retrieval and twin-image elimination for in-line Fresnel holograms[J]. Journal of the Optical Society of America A, 1987, 4(1): 159-165. doi: 10.1364/JOSAA.4.000159
    [4] 黄郑重, 曹良才. 面向高通量的多通道复用数字全息成像技术[J]. 中国光学(中英文),2022,15(6):1182-1193. doi: 10.37188/CO.2022-0070

    HUANG ZH Z, CAO L C. Multi-channel multiplexing digital holographic imaging for high throughput[J]. Chinese Optics, 2022, 15(6): 1182-1193. (in Chinese). doi: 10.37188/CO.2022-0070
    [5] 满天龙, 万玉红, 菅孟静, 等. 面向生物样品三维成像的光干涉显微技术研究进展[J]. 中国 ,2022,49(15):1507202. doi: 10.3788/CJL202249.1507202

    MAN T L, WAN Y H, JIAN M J, et al. Research progress in optical interference microscopy toward three-dimensional imaging of biological samples[J]. Chinese Journal of Lasers, 2022, 49(15): 1507202. (in Chinese). doi: 10.3788/CJL202249.1507202
    [6] KUMAR M, PENSIA L, KUMAR R. Highly stable vibration measurements by common-path off-axis digital holography[J]. Optics and Lasers in Engineering, 2023, 163: 107452. doi: 10.1016/j.optlaseng.2022.107452
    [7] MACH M, PSOTA P, ŽÍDEK K, et al. On-chip digital holographic interferometry for measuring wavefront deformation in transparent samples[J]. Optics Express, 2023, 31(11): 17185-17200. doi: 10.1364/OE.486997
    [8] LIU B C, FENG D Q, FENG F, et al. Maximum a posteriori-based digital holographic microscopy for high-resolution phase reconstruction of a micro-lens array[J]. Optics Communications, 2020, 477: 126364. doi: 10.1016/j.optcom.2020.126364
    [9] XIA P, WANG Q H, RI SH E. Random phase-shifting digital holography based on a self-calibrated system[J]. Optics Express, 2020, 28(14): 19988-19996. doi: 10.1364/OE.395819
    [10] XIA P, RI SH E, INOUE T, et al. Dynamic phase measurement of a transparent object by parallel phase-shifting digital holography with dual polarization imaging cameras[J]. Optics and Lasers in Engineering, 2021, 141: 106583. doi: 10.1016/j.optlaseng.2021.106583
    [11] RODRIGUEZ-ZURITA G, MENESES-FABIAN C, TOTO-ARELLANO N I, et al. One-shot phase-shifting phase-grating interferometry with modulation of polarization: case of four interferograms[J]. Optics Express, 2008, 16(11): 7806-7017. doi: 10.1364/OE.16.007806
    [12] CARRÉ P. Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures[J]. Metrologia, 1966, 2(1): 13-23. doi: 10.1088/0026-1394/2/1/005
    [13] NOBUKAWA T, MUROI T, KATANO Y, et al. Single-shot phase-shifting incoherent digital holography with multiplexed checkerboard phase gratings[J]. Optics Letters, 2018, 43(8): 1698-1701. doi: 10.1364/OL.43.001698
    [14] 石侠, 朱五凤, 袁斌, 等. 非相干光照明数字全息实验研究[J]. 中国 ,2015,42(12):1209003. doi: 10.3788/CJL201542.1209003

    SHI X, ZHU W F, YUAN B, et al. Experimental study of the incoherent digital holography[J]. Chinese Journal of Lasers, 2015, 42(12): 1209003. (in Chinese). doi: 10.3788/CJL201542.1209003
    [15] 钱晓彤, 田爱玲, 刘丙才, 等. 基于液晶空间光调制器的相移数字全息显微测量系统精度分析[J]. 光子学报,2022,51(4):0409003. doi: 10.3788/gzxb20225104.0409003

    QIAN X T, TIAN A L, LIU B C, et al. Precision analysis of phase shifting digital holography micromeasurement system based on LCSLM[J]. Acta Photonica Sinica, 2022, 51(4): 0409003. (in Chinese). doi: 10.3788/gzxb20225104.0409003
    [16] 邓丽军, 黄星艳, 曾吕明, 等. 基于双色LED芯片的双波长像面数字全息显微术[J]. 光学学报,2018,38(1):0111004. doi: 10.3788/AOS201838.0111004

    DENG L J, HUANG X Y, ZENG L M, et al. Dual-wavelength image-plane digital holographic microscopy based on Bi-color LED chips[J]. Acta Optica Sinica, 2018, 38(1): 0111004. (in Chinese). doi: 10.3788/AOS201838.0111004
    [17] LIM J, CHOI H, PARK N C. Phase-shift digital holography using multilayer ceramic capacitor actuators[J]. Optics and Lasers in Engineering, 2022, 156: 107080. doi: 10.1016/j.optlaseng.2022.107080
    [18] SHEN Y J, WANG X J, XIE ZH W, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light:Science & Applications, 2019, 8(1): 90.
    [19] WANG Y L, WANG Y ZH, GUO ZH Y. OAM radar based fast super-resolution imaging[J]. Measurement, 2022, 189: 110600. doi: 10.1016/j.measurement.2021.110600
    [20] SHAW L A, PANAS R M, SPADACCINI C M, et al. Scanning holographic optical tweezers[J]. Optics Letters, 2017, 42(15): 2862-2865. doi: 10.1364/OL.42.002862
    [21] XU L Y, REN Y, CHEN L L, et al. Azimuth measurement based on OAM phase spectrum of optical vortices[J]. Optics Communications, 2023, 530: 129170. doi: 10.1016/j.optcom.2022.129170
    [22] FUJIMOTO I, SATO S, KIM M Y, et al. Optical vortex beams for optical displacement measurements in a surveying field[J]. Measurement Science and Technology, 2011, 22(10): 105301. doi: 10.1088/0957-0233/22/10/105301
    [23] SUN H B, WANG X H, SUN P. In-plane displacement measurement using optical vortex phase shifting[J]. Applied Optics, 2016, 55(21): 5610-5613. doi: 10.1364/AO.55.005610
    [24] WANG W P, HUANG S J, CHEN Y, et al. Three-dimensional refractive index measurement of special optical fiber based on optical vortex phase-shifting digital holographic microscopy[J]. Optical Engineering, 2019, 58(3): 034108.
    [25] ZHAO D E, JIA CH ZH, MA Y Y, et al. High-accuracy surface profile measurement based on the vortex phase-shifting interferometry[J]. International Journal of Optics, 2021, 2021: 6937072.
    [26] KOTLYAR V V, KOVALEV A A, SKIDANOV R V, et al. Simple optical vortices formed by a spiral phase plate[J]. Journal of Optical Technology, 2007, 74(10): 686-693. doi: 10.1364/JOT.74.000686
    [27] DENG J, WANG H K, ZHANG F J, et al. Two-step phase demodulation algorithm based on the extreme value of interference[J]. Optics Letters, 2012, 37(22): 4669-4671. doi: 10.1364/OL.37.004669
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  290
  • HTML全文浏览量:  106
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-11
  • 修回日期:  2023-10-30
  • 网络出版日期:  2024-02-20

目录

    /

    返回文章
    返回
    Baidu
    map