留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电泵浦有机发光二极管衬底侧向辐射研究

赵变丽 王晶 李文文 张静 孙宁 王登科 江楠

赵变丽, 王晶, 李文文, 张静, 孙宁, 王登科, 江楠. 电泵浦有机发光二极管衬底侧向辐射研究[J]. , 2024, 17(4): 750-756. doi: 10.37188/CO.2023-0190
引用本文: 赵变丽, 王晶, 李文文, 张静, 孙宁, 王登科, 江楠. 电泵浦有机发光二极管衬底侧向辐射研究[J]. , 2024, 17(4): 750-756. doi: 10.37188/CO.2023-0190
ZHAO Bian-li, WANG Jing, LI Wen-wen, ZHANG Jing, SUN Ning, WANG Deng-ke, JIANG Nan. Lateral radiation of the substrate of electrically pumped organic light-emitting diodes[J]. Chinese Optics, 2024, 17(4): 750-756. doi: 10.37188/CO.2023-0190
Citation: ZHAO Bian-li, WANG Jing, LI Wen-wen, ZHANG Jing, SUN Ning, WANG Deng-ke, JIANG Nan. Lateral radiation of the substrate of electrically pumped organic light-emitting diodes[J]. Chinese Optics, 2024, 17(4): 750-756. doi: 10.37188/CO.2023-0190

电泵浦有机发光二极管衬底侧向辐射研究

cstr: 32171.14.CO.2023-0190
基金项目: 国家自然科学基金(No. 61805211)
详细信息
    作者简介:

    江 楠(1977—),男,云南建水人,博士,副教授,2021年于云南大学获得博士学位,主要从事有机半导体器件及 器研究。E-mail:jiangnan@ynu.edu.cn

  • 中图分类号: O436

Lateral radiation of the substrate of electrically pumped organic light-emitting diodes

Funds: Supported by National Natural Science Foundation (No. 61805211)
More Information
  • 摘要:

    有机发光二极管衬底侧向辐射光谱与正向辐射光谱相比,存在明显的窄化现象。研究影响器件侧向辐射光谱窄化的因素,进一步减小辐射光谱的线宽,可为电泵浦有机发光二极管 辐射研究打下基础。本文研究了随有机发光二极管空穴传输层 NPB 厚度的变化,器件衬底侧向辐射光谱的半高宽、峰位以及偏振特性的变化情况。比较了有机发光二极管衬底边缘两侧蒸镀银膜与未蒸镀银膜时的衬底侧向辐射光谱。研究发现蒸镀银膜时有机发光二极管的衬底侧向辐射光谱半高宽变窄,并且当空穴传输层 NPB 的厚度为 130 nm 时,器件衬底侧向辐射光谱半高宽低至 14 nm。说明器件衬底两侧存在银膜作为反射镜的情况下,衬底中侧向传播的光将受到光学谐振腔的作用。本文的研究结果为有机发光二极管辐射光谱的窄化和辐射光放大提供了一种新思路。

     

  • 图 1  不对称平板波导中的模式

    Figure 1.  Modes in asymmetric slab waveguide

    图 2  OLED 器件结构示意图

    Figure 2.  Schematic diagram of OLED device configuration

    图 3  不同厚度Ag、Al膜反射率随波长变化情况

    Figure 3.  Reflectances of Ag and Al films with different thicknesses varying with wavelength

    图 4  电致发光光谱采集系统结构图

    Figure 4.  Structural diagram of the electroluminescence spectrum collection system

    图 5  NPB 厚度在45~300 nm 范围内的辐射光谱

    Figure 5.  Radiation spectra when NPB thickness is in the range of 45~300 nm

    图 6  OLED 衬底侧向辐射光谱的偏振特性

    Figure 6.  Polarization characteristics of lateral radiation spectrum of the OLED substrate

    图 7  NPB 厚度在45~300 nm 范围内 OLED 的侧向发射光谱

    Figure 7.  Lateral emission spectra from OLED when the NPB thickness is in the range of 45−300 nm

    Baidu
  • [1] GRAUPNER W, LEISING G, LANZANI G, et al. Femtosecond relaxation of photoexcitations in a poly(para-phenylene)-type ladder polymer[J]. Physical Review Letters, 1996, 76(5): 847-850. doi: 10.1103/PhysRevLett.76.847
    [2] HIDE F, SCHWARTZ B J, DÍAZ-GARCÍA M A, et al. Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals[J]. Chemical Physics Letters, 1996, 256(4-5): 424-430. doi: 10.1016/0009-2614(96)00450-2
    [3] TESSLER N. Lasers based on semiconducting organic materials[J]. Advanced Materials, 1999, 11(5): 363-370. doi: 10.1002/(SICI)1521-4095(199903)11:5<363::AID-ADMA363>3.0.CO;2-Y
    [4] DÍAZ-GARCÍA M A, HIDE F, SCHWARTZ B J, et al. Plastic lasers: semiconducting polymers as a new class of solid-state laser materials[J]. Synthetic Metals, 1997, 84(1-3): 455-462. doi: 10.1016/S0379-6779(97)80829-6
    [5] ICHIKAWA M, NAKAMURA K, INOUE M, et al. Photopumped laser oscillation and charge-injected luminescence from organic semiconductor single crystals of a thiophene/phenylene co-oligomer[J]. Applied Physics Letters, 2005, 87(22): 221113. doi: 10.1063/1.2138361
    [6] LAWRENCE J R, TURNBULL G A, SAMUEL I D W, et al. Optical amplification in a first-generation dendritic organic semiconductor[J]. Optics Letters, 2004, 29(8): 869-871. doi: 10.1364/OL.29.000869
    [7] MCGEHEE M D, GUPTA R, VEENSTRA S, et al. Amplified spontaneous emission from photopumped films of a conjugated polymer[J]. Physical Review B, 1998, 58(11): 7035-7039. doi: 10.1103/PhysRevB.58.7035
    [8] BECKER H, BURNS S E, FRIEND R H. Effect of metal films on the photoluminescence and electroluminescence of conjugated polymers[J]. Physical Review B, 1997, 56(4): 1893-1905. doi: 10.1103/PhysRevB.56.1893
    [9] BURROWS P E, SHEN Z, BULOVIC V, et al. Relationship between electroluminescence and current transport in organic heterojunction light‐emitting devices[J]. Journal of Applied Physics, 1996, 79(10): 7991-8006. doi: 10.1063/1.362350
    [10] NOWY S, KRUMMACHER B C, FRISCHEISEN J, et al. Light extraction and optical loss mechanisms in organic light-emitting diodes: Influence of the emitter quantum efficiency[J]. Journal of Applied Physics, 2008, 104(12): 123109. doi: 10.1063/1.3043800
    [11] LIN J, HU Y SH, LV Y, et al. Light gain amplification in microcavity organic semiconductor laser diodes under electrical pumping[J]. Science Bulletin, 2017, 62(24): 1637-1638. doi: 10.1016/j.scib.2017.12.010
    [12] SEO J A, GONG M S, LEE J Y. High external quantum efficiency in yellow and white phosphorescent organic light-emitting diodes using an indoloacridinefluorene type host material[J]. Organic Electronics, 2014, 15(8): 1843-1848. doi: 10.1016/j.orgel.2014.05.017
    [13] AHMAD V, SOBUS J, BENCHEIKH F, et al. High EQE and high brightness solution-processed TADF light-emitting transistors and OLEDs[J]. Advanced Optical Materials, 2020, 8(18): 2000554. doi: 10.1002/adom.202000554
    [14] BALDO M A, O'BRIEN D F, YOU Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices[J]. Nature, 1998, 395(6698): 151-154. doi: 10.1038/25954
    [15] HU Y SH, BENCHEIKH F, CHÉNAIS S, et al. High performance planar microcavity organic semiconductor lasers based on thermally evaporated top distributed Bragg reflector[J]. Applied Physics Letters, 2020, 117(15): 153301. doi: 10.1063/5.0016052
    [16] MATSUSHIMA T, BENCHEIKH F, KOMINO T, et al. High performance from extraordinarily thick organic light-emitting diodes[J]. Nature, 2019, 572(7770): 502-506. doi: 10.1038/s41586-019-1435-5
    [17] SLOWIK I, FISCHER A, FRÖB H, et al. Novel organic light-emitting diode design for future lasing applications[J]. Organic Electronics, 2017, 48: 132-137. doi: 10.1016/j.orgel.2017.05.048
    [18] RAN G Z, JIANG D F, KAN Q, et al. Experimental observation of polarized electroluminescence from edge-emission organic light emitting devices[J]. Applied Physics Letters, 2010, 97(23): 233304. doi: 10.1063/1.3525161
    [19] TIAN Y, GAN ZH Q, ZHOU ZH Q, et al. Spectrally narrowed edge emission from organic light-emitting diodes[J]. Applied Physics Letters, 2007, 91(14): 143504. doi: 10.1063/1.2778358
    [20] YOKOYAMA D, NAKANOTANI H, SETOGUCHI Y, et al. Spectrally narrow emission at cutoff wavelength from edge of electrically pumped organic light-emitting diodes[J]. Japanese Journal of Applied Physics, 2007, 46(9L): L826-L829. doi: 10.1143/JJAP.46.L826
    [21] PAUCHARD M, VEHSE M, SWENSEN J, et al. Optical amplification of the cutoff mode in planar asymmetric polymer waveguides[J]. Applied Physics Letters, 2003, 83(22): 4488-4490. doi: 10.1063/1.1627477
    [22] CHANG J F, HUANG Y S, CHEN P T, et al. Reduced threshold of optically pumped amplified spontaneous emission and narrow line-width electroluminescence at cutoff wavelength from bilayer organic waveguide devices[J]. Optics Express, 2015, 23(11): 14695-14706. doi: 10.1364/OE.23.014695
    [23] RAN G Z, JIANG D F. Polarized electroluminescence from edge-emission organic light emitting devices[J]. Proceedings of SPIE, 2011, 7943: 794314. doi: 10.1117/12.874516
    [24] BRÜTTING W, FRISCHEISEN J, SCHMIDT T D, et al. Device efficiency of organic light-emitting diodes: Progress by improved light outcoupling[J]. Physica Status Solidi (A), 2013, 210(1): 44-65. doi: 10.1002/pssa.201228320
    [25] DEPPE D G, LEI C, LIN C C, et al. Spontaneous emission from planar microstructures[J]. Journal of Modern Optics, 1994, 41(2): 325-344. doi: 10.1080/09500349414550361
    [26] GU G, SHEN Z L, BURROWS P E, et al. Transparent flexible organic light-emitting devices[J]. Advanced Materials, 1997, 9(9): 725-728. doi: 10.1002/adma.19970090910
    [27] SHEN J L, CHANG J Y, LIU H C, et al. Nearly in-plane photoluminescence studies in asymmetric semiconductor microcavities[J]. Solid State Communications, 2000, 116(8): 431-435. doi: 10.1016/S0038-1098(00)00356-2
    [28] BULOVIĆ V, KHALFIN V B, GU G, et al. Weak microcavity effects in organic light-emitting devices[J]. Physical Review B, 1998, 58(7): 3730-3740. doi: 10.1103/PhysRevB.58.3730
    [29] LIN CH L, CHANG H C, TIEN K C, et al. Influences of resonant wavelengths on performances of microcavity organic light-emitting devices[J]. Applied Physics Letters, 2007, 90(7): 071111. doi: 10.1063/1.2472541
  • 加载中
图(7)
计量
  • 文章访问数:  117
  • HTML全文浏览量:  52
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-26
  • 修回日期:  2023-11-17
  • 网络出版日期:  2024-05-15

目录

    /

    返回文章
    返回
    Baidu
    map