-
摘要:
噪声系数是评价高频电子器件传输信号性能的重要参数,随着工作频率的增加,高频电子器件的噪声系数通常会增大,现有噪声源的超噪比无法满足测量需求。为了实现高频电子器件噪声系数的测量,本文基于非相干光混频技术,将三束非相干光耦合进入单行载流子光电二极管,研制了220~325 GHz高超噪比且可调谐的太赫兹光子噪声源,超噪比可调谐至45 dB。通过Y因子法将其应用于大噪声系数、负变频增益太赫兹混频器噪声系数的测量。测量得到太赫兹混频器噪声系数的范围为16~32 dB,变频增益约为−13 dB,测量不确定度为0.43 dB。研制的高超噪比且可调谐的太赫兹光子噪声源,能够满足大噪声系数太赫兹电子器件的测量需求,对太赫兹电子器件噪声系数的测量以及指导器件的进一步优化有着重要的作用。
Abstract:Noise Figure (NF) is an important parameter in evaluating the performance of transmitting a signal from a high-frequency electronic device. As the operating frequency increases, the NF of high-frequency electronic devices usually increases, and the Excess Noise Ratio (ENR) of existing noise sources cannot meet the associated measurement requirements. Therefore, to meet the measurement requirements for the NF of high-frequency electronic devices, we propose combining three incoherent optical beams into an unitraveling carrier photodiode (UTC-PD) based on incoherent optical mixing technology. A tunable terahertz (THz) photonics noise source with a high ENR in the 220−325 GHz frequency range is developed. The ENR can be tuned up to 45 dB. By using the Y-factor method, the proposed THz photonics noise source is applied to measure a THz mixer with large NF and negative conversion gain. The measured NF of the THz mixer ranges from 16 to 32 dB, the conversion gain is about −13 dB, and the uncertainty is 0.43 dB. The tunable THz photonics noise source with high ENR can meet the measurement requirements of THz electronic devices with high NF. It will play an important role in the measurement of NF of THz electronic devices and in guiding further optimization.
-
Key words:
- noise figure /
- noise source /
- terahertz mixer /
- optical mixing /
- Y-factor method
-
表 1 各物理量的值
Table 1. The values of each physical quantity
物理量 δENR δNF12 δNF2 δGdB 计算值 0.27 dB 0.38 dB 0.38 dB 0.27 dB 物理量 F1 F2 F12 G 测量值 285.68 1.73 311.58 0.03 -
[1] NIU ZH Q, ZHANG B, DAI B L, et al. 220 GHz multi circuit integrated front end based on solid-state circuits for high speed communication system[J]. Chinese Journal of Electronics, 2022, 31(3): 569-580. doi: 10.1049/cje.2021.00.295 [2] MAIER D, REVERDY J, BILLON-PIERRON D, et al. Upgrade of EMIR's band 3 and band 4 mixers for the IRAM 30 m telescope[J]. IEEE Transactions on Terahertz Science and Technology, 2012, 2(2): 215-221. doi: 10.1109/TTHZ.2011.2180609 [3] PAGNINI L, COLLODI G, CIDRONALI A. A GaN-HEMT active drain-pumped mixer for S-band FMCW radar front-end applications[J]. Sensors, 2023, 23(9): 4479. doi: 10.3390/s23094479 [4] LIANG W J, GAO Q L. A WR28 cryogenic standard noise source[J]. Science Technology and Engineering, 2011, 11(31): 7672-7676,7681. doi: 10.3969/j.issn.1671-1815.2011.31.018 [5] FORSTÉN H, SAIJETS J H, KANTANEN M, et al. Millimeter-wave amplifier-based noise sources in SiGe BiCMOS technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(11): 4689-4696. doi: 10.1109/TMTT.2021.3104028 [6] ZHAO R K, ZHANG ZH ZH, ZHANG Y, et al. Design and implementation of 50GHz-110GHz ultra-broadband noise source[C]. 2022 International Conference on Microwave and Millimeter Wave Technology, IEEE, 2022: 1-3. [7] FIORESE V, GONCALVES J C A, BOUVOT S, et al. A 140 GHz to 170 GHz active tunable noise source development in SiGe BiCMOS 55 nm technology[C]. 2021 16th European Microwave Integrated Circuits Conference, IEEE, 2021: 125-128. [8] GHANEM H, GONCALVES J C A, CHEVALIER P, et al. Modeling and analysis of a broadband schottky diode noise source up to 325 GHz based on 55-nm SiGe BiCMOS technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(6): 2268-2277. doi: 10.1109/TMTT.2020.2980513 [9] 黄海碧, 刘文杰, 孙粤辉, 等. 高超噪比宽带毫米波噪声信号光子学产生研究[J]. 中国光学,2022,15(2):251-258. doi: 10.37188/CO.2021-0158HUANG H B, LIU W J, SUN Y H, et al. Photonics generation of broadband millimeter wave noise signals with high excess noise ratios[J]. Chinese Optics, 2022, 15(2): 251-258. (in Chinese). doi: 10.37188/CO.2021-0158 [10] SUN Y H, CHEN Y X, LI P, et al. Flat millimeter-wave noise generation by optically mixing multiple wavelength-sliced ASE lights[J]. IEEE Photonics Technology Letters, 2021, 33(22): 1270-1273. doi: 10.1109/LPT.2021.3117022 [11] VIDAL B. Broadband photonic microwave noise sources[J]. IEEE Photonics Technology Letters, 2020, 32(10): 592-594. doi: 10.1109/LPT.2020.2986739 [12] LIU J B, LIU W J, SUN Y H, et al. Generation of broadband flat millimeter-wave white noise using rectangular ASE slices mixing[J]. Optics Communications, 2023, 530: 129106. doi: 10.1016/j.optcom.2022.129106 [13] SONG H J, SHIMIZU N, KUKUTSU N, et al. Microwave photonic noise source from microwave to sub-terahertz wave bands and its applications to noise characterization[J]. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(12): 2989-2997. doi: 10.1109/TMTT.2008.2007325 [14] SONG H J, YAITA M. On-wafer noise measurement at 300 GHz using UTC-PD as noise source[J]. IEEE Microwave and Wireless Components Letters, 2014, 24(8): 578-580. doi: 10.1109/LMWC.2014.2324762 [15] GHANEM H, LEPILLIET S, DANNEVILLE F, et al. 300-GHz intermodulation/noise characterization enabled by a single THz photonics source[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(10): 1013-1016. doi: 10.1109/LMWC.2020.3020817 [16] KHAMAISI B, SOCHER E. A 230-310 GHz down converter with integrated local oscillator in 65 nm CMOS technology[C]. 9th European Microwave Integrated Circuits Conference, IEEE, 2014: 136-139. [17] HARA S, KATAYAMA K, TAKANO K, et al. A 32Gbit/s 16QAM CMOS receiver in 300GHz band[C]. 2017 IEEE MTT-S International Microwave Symposium, IEEE, 2017: 1703-1706. [18] OJEFORS E, HEINEMANN B, PFEIFFER U R. Subharmonic 220- and 320-GHz SiGe HBT receiver front-ends[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(5): 1397-1404. doi: 10.1109/TMTT.2012.2190092 [19] 董建涛. Y-因子算法与噪声系数不确定度分析[J]. 国外电子测量技术,2009,28(3):28-30. doi: 10.3969/j.issn.1002-8978.2009.03.009DONG J T. Y-factor method and the analysis of NF uncertain[J]. Foreign Electronic Measurement Technology, 2009, 28(3): 28-30. (in Chinese). doi: 10.3969/j.issn.1002-8978.2009.03.009 [20] 孙粤辉, 郭亚, 王云才, 等. 130~170 GHz平坦毫米波噪声信号产生技术[J]. 中国科学: 信息科学,2022,52(11):2155-2162.SUN Y H, GUO Y, WANG Y C, et al. Generation of 130-170 GHz flat millimeter-wave noise signal[J]. SCIENTIA SINICA Informationis, 2022, 52(11): 2155-2162. (in Chinese). [21] CHEN ZH, DENG J Q, WANG M, et al. Design of a novel 170GHz–260GHz sub-harmonic mixer based on planar Schottky diodes[C]. Proceedings of IEEE 9th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies, IEEE, 2016: 186-188. [22] 陈晓华. 3mm噪声系数测量系统[D]. 西安: 西安电子科技大学, 2009.CHEN X H. 3mm noise figure measurement system[D]. Xi’an: Xidian University, 2009. (in Chinese).