留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

燃煤锅炉高温腐蚀气体 在线监测设备研究

李龙 师帅 宫廷 田亚莉 郭古青 邱选兵 熊小鹤 李传亮

李龙, 师帅, 宫廷, 田亚莉, 郭古青, 邱选兵, 熊小鹤, 李传亮. 燃煤锅炉高温腐蚀气体 在线监测设备研究[J]. , 2024, 17(5): 1060-1067. doi: 10.37188/CO.2023-0209
引用本文: 李龙, 师帅, 宫廷, 田亚莉, 郭古青, 邱选兵, 熊小鹤, 李传亮. 燃煤锅炉高温腐蚀气体 在线监测设备研究[J]. , 2024, 17(5): 1060-1067. doi: 10.37188/CO.2023-0209
LI Long, SHI Shuai, GONG Ting, TIAN Ya-li, GUO Gu-qing, QIU Xuan-bing, XIONG Xiao-he, LI Chuan-liang. Research on laser online monitoring equipment for high-temperature corrosive gas in coal-fired boilers[J]. Chinese Optics, 2024, 17(5): 1060-1067. doi: 10.37188/CO.2023-0209
Citation: LI Long, SHI Shuai, GONG Ting, TIAN Ya-li, GUO Gu-qing, QIU Xuan-bing, XIONG Xiao-he, LI Chuan-liang. Research on laser online monitoring equipment for high-temperature corrosive gas in coal-fired boilers[J]. Chinese Optics, 2024, 17(5): 1060-1067. doi: 10.37188/CO.2023-0209

燃煤锅炉高温腐蚀气体 在线监测设备研究

基金项目: 国家重点研发计划(No. 2023YFF0718100);国家自然科学基金(No. 52076145,No. 12304403);山西省科技创新人才团队专项资助(No. 202304051001034);山西省留学人员科技活动项目(No. 20230031);山西省省筹资金资助回国留学人员科研资助项目(No. 2023-151);山西省基础研究计划(No. 202203021222204,No. 202303021212224)
详细信息
    作者简介:

    李传亮(1983—),男,山东沂源人,博士,教授,博士生导师,2011年于华东师范大学获得博士学位,主要从事 光谱学及应用、材料无损检测、光电传感装备等方面的研究。E-mail:clli@tyust.edu.cn

  • 中图分类号: O433.5

Research on laser online monitoring equipment for high-temperature corrosive gas in coal-fired boilers

Funds: Supported by the National Key Research and Development Program of China (No. 2023YFF0718100); National Natural Science Foundation of China (No. 52076145, No. 12304403); the Special Fund for Science and Technology Innovation Teams of Shanxi Province (No. 202304051001034); Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province (No. 20230031); Shanxi Scholarship Council of China (No. 2023-151); Fundamental Research Program of Shanxi Province (No. 202203021222204, No. 202303021212224)
More Information
  • 摘要:

    燃煤锅炉燃烧场的经济性、安全性和环保性对于智慧电厂建设具有重要意义。H2S和CO是燃煤锅炉燃烧场的两种主要高温腐蚀气体,它们不仅腐蚀锅炉近壁面,尾气对大气环境的危害也极其严重。基于近红外可调谐半导体 吸收光谱技术,结合波长调制光谱技术和频分复用技术,研制了一款无人值守的燃煤锅炉主燃区的H2S和CO气体浓度实时在线监测设备。仿真模拟了6335~6341 cm−1范围内的气体吸收光谱,并选定1.5 μm附近的近红外 器作为 光源。研制了一套耐高温耐腐蚀的Herriott型多光程池,使 与气体相互作用的有效光程达15 m;开发了硬件电路及相应的固件程序,实现了H2S和CO吸收光谱信号的二次解调与浓度反演。线性度和Allan方差实验表明,其线性拟合相关系数分别为0.99980.9995,在73 s和53 s的积分时间下,H2S和CO的最低检测极限分别为0.2×10−6 mol/mol和0.344×10−6 mol/mol。最后,将研制的设备在某300 MW电负荷的四角切圆燃煤锅炉主燃区燃烧气氛场进行应用示范,对水冷壁附近的H2S和CO进行同步测量。结果表明,锅炉中H2S和CO的浓度呈正相关,厌氧燃烧会导致两种气体的含量增加,造成对水冷壁的腐蚀。

     

  • 图 1  H2S、CO及CO2吸收谱线

    Figure 1.  Absorption lines of H2S, CO and CO2

    图 2  气体测量设备框图

    Figure 2.  Block diagram of gas measurement equipment

    图 3  H2S和CO吸收信号的幅度与标准气体浓度的关系

    Figure 3.  The relationship between the amplitude and standard gas concentration for H2S and CO absorption signals

    图 4  10×10−6 mol/mol的H2S和100×10−6 mol/mol的CO吸收信号的Allan方差随积分时间的变化情况

    Figure 4.  Allan variance of 10×10−6 mol/mol H2S and 100×10−6 mol/mol CO absorption signals varying with integration time

    图 5  现场测量48 h的H2S和CO浓度数据

    Figure 5.  On-site measurement data of H2S and CO concentrations for 48 hours

    Baidu
  • [1] 陈颖, 胡天丁, 刘云利, 等. 二氧化硫在化学资源化利用中的研究进展[J]. 应用化学,2022,39(2):223-234.

    CHEN Y, HU T D, LIU Y L, et al. Research progress on chemical resourse utilization of sulfur dioxide[J]. Chinese Journal of Applied Chemistry, 2022, 39(2): 223-234. (in Chinese).
    [2] XIONG X H, CHEN F L, LI L Y, et al. Water wall tubes’ high temperature corrosion root cause investigation: a 300 MW level boiler case[J]. Energies, 2023, 16(4): 1767. doi: 10.3390/en16041767
    [3] CAO L T, PENG R, DENG ZH Y. Optimization study on high-temperature corrosion prevention of the water wall of a 1000 MW dual circle tangential boiler during operation[J]. Energy Reports, 2021, 7: 915-925. doi: 10.1016/j.egyr.2021.09.181
    [4] 齐骥, 相佳雯, 林栋, 等. 微流控技术在海洋分析监测中的应用研究[J]. 分析化学,2023,51(10):1545-1556.

    QI J, XIANG J W, LIN D, et al. Applications of microfluidic technology in marine analysis and monitoring[J]. Chinese Journal of Analytical Chemistry, 2023, 51(10): 1545-1556. (in Chinese).
    [5] 曲艺. 大气光学遥感监测技术现状与发展趋势[J]. 中国光学,2013,6(6):834-840.

    QU Y. Technical status and development tendency of atmosphere optical remote and monitoring[J]. Chinese Optics, 2013, 6(6): 834-840. (in Chinese).
    [6] 刘明言, 石秀顶, 李天国, 等. 电化学分析方法检测重金属离子研究进展[J]. 应用化学,2023,40(4):463-475.

    LIU M Y, SHI X D, LI T G, et al. Research progress in detection of heavy metal ions by electrochemical analysis[J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 463-475. (in Chinese).
    [7] XIONG X H, LV ZH M, YU SH L, et al. Coke preheating combustion study on NOx and SO2 emission[J]. Journal of the Energy Institute, 2021, 97: 131-137. doi: 10.1016/j.joei.2021.04.007
    [8] 杨舒涵, 乔顺达, 林殿阳, 等. 基于可调谐半导体 吸收光谱的氧气浓度高灵敏度检测研究[J]. 中国光学(中英文),2023,16(1):151-157. doi: 10.37188/CO.2022-0029

    YANG SH H, QIAO SH D, LIN D Y, et al. Research on highly sensitive detection of oxygen concentrations based on tunable diode laser absorption spectroscopy[J]. Chinese Optics, 2023, 16(1): 151-157. (in Chinese). doi: 10.37188/CO.2022-0029
    [9] 黄慧, 周亦辰, 彭宇, 等. 基于量子级联 器中红外光谱技术的幽门螺旋杆菌呼气诊断的可行性研究[J]. 分析化学,2022,50(9):1328-1335.

    HUANG H, ZHOU Y CH, PENG Y, et al. Feasibility study of breath diagnosis in helicobacter pylori based on quantum cascade laser mid-infrared spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2022, 50(9): 1328-1335. (in Chinese).
    [10] GUO Y CH, QIU X B, LI N, et al. A portable laser-based sensor for detecting H2S in domestic natural gas[J]. Infrared Physics & Technology, 2020, 105: 103153.
    [11] 谢耀, 华道柱, 齐宇, 等. GFC-IFC技术在多组分微量气体分析中的应用[J]. 中国光学,2021,14(6):1378-1386. doi: 10.37188/CO.2021-0064

    XIE Y, HUA D Z, QI Y, et al. Applications of GFC-IFC in trace multi-component gas analysis[J]. Chinese Optics, 2021, 14(6): 1378-1386. (in Chinese). doi: 10.37188/CO.2021-0064
    [12] RAZA M, XU K, LU ZH M, et al. Simultaneous methane and acetylene detection using frequency-division multiplexed laser absorption spectroscopy[J]. Optics & Laser Technology, 2022, 154: 108285.
    [13] 李文婷, 吴涛, 闫宏达, 等. 基于射频白噪声的离轴积分腔输出光谱的大气CH4和CO2的监测[J]. 光学学报,2023,43(24):2401013.

    LI W T, WU T, YAN H D, et al. Monitoring of atmospheric CH4 and CO2 by off-axis integrating cavity output spectra based on RF white noise[J]. Acta Optica Sinica, 2023, 43(24): 2401013. (in Chinese).
    [14] ZHENG K Y, ZHENG CH T, YAO D, et al. A near-infrared C2H2/CH4 dual-gas sensor system combining off-axis integrated-cavity output spectroscopy and frequency-division-multiplexing-based wavelength modulation spectroscopy[J]. Analyst, 2019, 144(6): 2003-2010. doi: 10.1039/C8AN02164C
    [15] POGÁNY A, WERHAHN O, EBERT V. Measurement of ammonia line intensities in the 1.5 µm region by direct tunable diode laser absorption spectroscopy[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 276: 107884. doi: 10.1016/j.jqsrt.2021.107884
    [16] 彭志敏, 杜艳君, 贺拴玲, 等. 350 MW四角切圆锅炉水冷壁高温腐蚀及H2S在线监测预警[J]. 锅炉技术,2022,53(6):1-7.

    PENG ZH M, DU Y J, HE SH L, et al. High temperature corrosion of water wall of 350 MW tangentially fired boiler and H2S online monitoring and early warning[J]. Boiler Technology, 2022, 53(6): 1-7. (in Chinese).
    [17] YU B, WU X, ZHANG M H, et al. Tunable diode laser absorption spectroscopy for open-path monitoring gas markers in fire combustion products[J]. Infrared Physics & Technology, 2023, 131: 104690.
    [18] 朱晓睿, 卢伟业, 饶雨舟, 等. TDLAS直接吸收法测量CO2的基线选择方法[J]. 中国光学,2017,10(4):455-461. doi: 10.3788/co.20171004.0455

    ZHU X R, LU W Y, RAO Y ZH, et al. Selection of baseline method in TDLAS direct absorption CO2 measurement[J]. Chinese Optics, 2017, 10(4): 455-461. (in Chinese). doi: 10.3788/co.20171004.0455
    [19] 龙江雄, 张玉钧, 邵立, 等. 基于可调谐二极管 吸收光谱的气池光程可溯源测量[J]. 光谱学与光谱分析,2022,42(11):3461-3466.

    LONG J X, ZHANG Y J, SHAO L, et al. Traceable measurement of optical path length of gas cell based on tunable diode laser absorption spectroscopy[J]. Spectroscopy and Spectral Analysis, 2022, 42(11): 3461-3466. (in Chinese).
    [20] 袁志国, 马修真, 刘晓楠, 等. 利用可调谐 吸收光谱技术的柴油机排放温度测试研究[J]. 中国光学,2020,13(2):281-289. doi: 10.3788/co.20201302.0281

    YUAN ZH G, MA X ZH, LIU X N, et al. Testing on diesel engine emission temperature using tunable laser absorption spectroscopy technology[J]. Chinese Optics, 2020, 13(2): 281-289. (in Chinese). doi: 10.3788/co.20201302.0281
    [21] 钟笠, 宋迪, 焦月, 等. 具有复杂光谱特征的丙烯气体的TDLAS检测技术研究[J]. 中国光学,2020,13(5):1044-1054. doi: 10.37188/CO.2019-0203

    ZHONG L, SONG D, JIAO Y, et al. TDLAS detection of propylene with complex spectral features[J]. Chinese Optics, 2020, 13(5): 1044-1054. (in Chinese). doi: 10.37188/CO.2019-0203
    [22] 连久翔, 周宾, 王一红, 等. 基于高频参考光的频分复用技术实现强干扰下的气体浓度测量[J]. 光学学报,2020,40(16):1630001. doi: 10.3788/AOS202040.1630001

    LIAN J X, ZHOU B, WANG Y H, et al. Measurement of gas concentration under strong interference by frequency multiplexing based on high-frequency reference signal[J]. Acta Optica Sinica, 2020, 40(16): 1630001. (in Chinese). doi: 10.3788/AOS202040.1630001
    [23] 刘倩倩, 郑玉权. 超高分辨率光谱定标技术发展概况[J]. 中国光学,2012,5(6):566-577.

    LIU Q Q, ZHENG Y Q. Development of spectral calibration technologies with ultra-high resolutions[J]. Chinese Optics, 2012, 5(6): 566-577. (in Chinese).
    [24] 任颐杰, 颜昌翔, 徐嘉蔚. 增强吸收光谱技术的研究进展及展望[J]. 中国光学(中英文),2023,16(6):1273-1292. doi: 10.37188/CO.2022-0246

    REN Y J, YAN CH X, XU J W. Development and prospects of enhanced absorption spectroscopy[J]. Chinese Optics, 2023, 16(6): 1273-1292. (in Chinese). doi: 10.37188/CO.2022-0246
    [25] QIU X B, WEI Y B, LI J, et al. Early detection system for coal spontaneous combustion by laser dual-species sensor of CO and CH4[J]. Optics & Laser Technology, 2020, 121: 105832.
    [26] LIAO K X, QIN M, YANG N, et al. Corrosion main control factors and corrosion degree prediction charts in H2S and CO2 coexisting associated gas pipelines[J]. Materials Chemistry and Physics, 2022, 292: 126838. doi: 10.1016/j.matchemphys.2022.126838
    [27] FANG B, YANG N N, WANG CH H, et al. Highly sensitive portable laser absorption spectroscopy formaldehyde sensor using compact spherical mirror multi-pass cell[J]. Sensors and Actuators B: Chemical, 2023, 394: 134379. doi: 10.1016/j.snb.2023.134379
    [28] 彭志敏, 贺拴玲, 周佩丽, 等. 基于TDLAS的煤粉锅炉水冷壁近壁面CO/H2S同步在线监测[J]. 热力发电,2022,51(10):145-152.

    PENG ZH M, HE SH L, ZHOU P L, et al. TDLAS-based synchronous on-line measurement of CO/H2S near water wall of a pulverized coal boiler[J]. Thermal Power Generation, 2022, 51(10): 145-152. (in Chinese).
    [29] 许伟刚, 谭厚章, 刘原一, 等. 水冷壁高温腐蚀倾向判断及H2S近壁面许用浓度研究[J]. 中国电力,2018,51(7):113-119.

    XU W G, TAN H ZH, LIU Y Y, et al. Research on determination of high temperature corrosion tendency of water walls and limiting concentration range of H2S near walls[J]. Electric Power, 2018, 51(7): 113-119. (in Chinese).
  • 加载中
图(5)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  51
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-23
  • 修回日期:  2023-12-13
  • 网络出版日期:  2024-05-15

目录

    /

    返回文章
    返回
    Baidu
    map