-
摘要:
同心阵列系统具有小型化与大视场的优势,通过探测器的拼接可实现更大视场高分成像。为了进一步实现大视场系统结构的小型化与轻量化,本文采用伽利略型同心阵列结构形式,设计了一款工作在可见光波段,全视场大小为65°,焦距为19 mm,F数为4.7,总长为44.3 mm的同心阵列系统。在特征频率208 lp/mm处,系统的调制传递函数大于0.3,全视场弥散斑均方根半径均小于探测器像元尺寸2.4 μm,成像质量接近衍射极限。由于同心阵列系统结构的特殊性,其中继系统排布紧密,导致各中继系统间的串扰杂散光严重影响成像质量。针对该问题,本文采用内置消杂光光阑方法抑制串扰杂散光,并对光学系统的杂散光进行仿真分析。分析结果表明,在加入消杂光光阑后,杂光系数均降低至1×10−6以下,验证了串扰杂光抑制方法的有效性。
Abstract:Monocentric multiscale systems offer the advantages of miniaturization and a large field of view. In order to further realize the miniaturization and light weight of the large field-of-view system, we adopt the Galileo-type monocentric multiscale system form and design a monocentric multiscale system operating in the visible spectrum. The modulation transfer function of the system is greater than 0.3 at a frequency of 208 lp/mm, the root-mean-square radius of the full-field diffuse spot is smaller than the detector pixel size of 2.4 μm, and the imaging quality is close to the diffraction limit. The monocentric multiscale system structure has a couple of special characteristics: the relay lenses are closely arranged and the crosstalk stray light between the relay lenses seriously affects the imaging quality. To solve the problem, we apply the method of suppressing the crosstalk stray light with the built-in stary light stop. On the basis, we carry out the simulation and analysis of the stray light of the optical system. Analysis results show that the stray light coefficients are all reduced to less than 1×10−6 after the addition of the stray light stop, which verifies the crosstalk stray light suppression method.
-
Key words:
- monocentric multiscale systems /
- relay lens /
- crosstalk stray light /
- stray light stop
-
表 1 系统指标要求
Table 1. System parameter requirements
参数 指标 波长/nm 486.1~656.3 入瞳直径/mm 4 总视场/(°) 65 单个次级相机视场/(°) 4.8 同心阵列系统焦距/mm 18 -
[1] 张裕, 张越, 张宁, 等. 基于逆深度滤波的双目折反射全景相机动态SLAM系统[J]. 光学 精密工程,2022,30(11):1282-1289. doi: 10.37188/OPE.20223011.1282ZHANG Y, ZHANG Y, ZHANG N, et al. Dynamic SLAM of binocular catadioptric panoramic camera based on inverse depth filter[J]. Optics and Precision Engineering, 2022, 30(11): 1282-1289. (in Chinese). doi: 10.37188/OPE.20223011.1282 [2] 吕丽军, 吴学伟. 鱼眼镜头初始结构的设计[J]. 光学学报,2017,37(2):0208001. doi: 10.3788/AOS201737.0208001LV L J, WU X W. Design of initial structure of fisheye lens[J]. Acta Optica Sinica, 2017, 37(2): 0208001. (in Chinese). doi: 10.3788/AOS201737.0208001 [3] 史光辉, 杨威. 用于图像拼接的电视摄像光学系统[J]. 中国光学,2014,7(4):638-643.SHI G H, YANG W. Optical system used to compose images in television photograph[J]. Chinese Optics, 2014, 7(4): 638-643. (in Chinese). [4] ZHANG SH SH, WU Q, LIU CH Y, et al. Bio-inspired spherical compound eye camera for simultaneous wide-band and large field of view imaging[J]. Optics Express, 2022, 30(12): 20952-20962. doi: 10.1364/OE.454530 [5] LIU J H, ZHANG Y J, XU H R, et al. Long-working-distance 3D measurement with a bionic curved compound-eye camera[J]. Optics Express, 2022, 30(20): 36985-36995. doi: 10.1364/OE.473620 [6] KITTLE, DAVIDS S, DANIEL L, MARKs, et al. Automated calibration and optical testing of the AWARE-2 gigapixel multiscale camera[J]. Digital Photography IX, 2013, 8660: 40-48. [7] MARKS D L, LLULL P R, PHILLIPS Z, et al. Characterization of the AWARE 10 two-gigapixel wide-field-of-view visible imager[J]. Applied Optics, 2014, 53(13): C54-C63. [8] TREMBLAY E J, MARKS D L, BRADY D J, et al. Design and scaling of monocentric multiscale imagers[J]. Applied Optics, 2012, 51(20): 4691-4702. [9] 沈阳. 基于同心球镜的超大视场光学系统研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2019.SHEN Y. Research on super large field of view optical imaging technology based on concentric lens[D]. Xi’an: University of Chinese Academy of Sciences (Xi'an Institute of Optics and Precision Mechanics of CAS), 2019. (in Chinese). [10] 刘飞, 刘佳维, 邵晓鹏. 高集成度小型化共心多尺度光学系统设计[J]. 光学 精密工程,2020,28(6):1275-1282. doi: 10.3788/OPE.20202806.1275LIU F, LIU J W, SHAO X P. Design of high integration and miniaturization concentric multiscale optical system[J]. Optics and Precision Engineering, 2020, 28(6): 1275-1282. (in Chinese). doi: 10.3788/OPE.20202806.1275 [11] HUANG Y H, FU Y G, ZHANG G Y, et al. Modeling and analysis of a monocentric multi-scale optical system[J]. Optics Express, 2020, 28(22): 32657-32675. doi: 10.1364/OE.406213 [12] 高伟饶, 董科研, 江伦. 单波长 通信终端的隔离度[J]. 中国光学(中英文),2023,16(5):1137-1148. doi: 10.37188/CO.2022-0253GAO W R, DONG K Y, JIANG L. Isolation of single wavelength laser communication terminals[J]. Chinese Optics, 2023, 16(5): 1137-1148. (in Chinese). doi: 10.37188/CO.2022-0253 [13] 李禹衡, 刘智颖, 黄蕴涵, 等. 小型化全景系统的杂散光分析与抑制方法研究[J]. 应用光学,2020,41(3):455-461. doi: 10.5768/JAO202041.0301004LI Y H, LIU ZH Y, HUANG Y H, et al. Analysis and suppression of stray light in miniaturized panoramic system[J]. Journal of Applied Optics, 2020, 41(3): 455-461. (in Chinese). doi: 10.5768/JAO202041.0301004 [14] 陈醒, 胡春晖, 颜昌翔, 等. 大视场空间可见光相机的杂散光分析与抑制[J]. 中国光学,2019,12(3):678-685. doi: 10.3788/co.20191203.0678CHEN X, HU CH H, YAN CH X, et al. Analysis and suppression of space stray light of visible cameras with wide field of view[J]. Chinese Optics, 2019, 12(3): 678-685. (in Chinese). doi: 10.3788/co.20191203.0678