留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双有源区结构4.7 μm中波红外量子级联金宝搏188软件怎么用 器

王渝沛 章宇航 罗晓玥 钱晨灏 程洋 赵武 魏志祥 韩迪仪 孙方圆 王俊 周大勇

王渝沛, 章宇航, 罗晓玥, 钱晨灏, 程洋, 赵武, 魏志祥, 韩迪仪, 孙方圆, 王俊, 周大勇. 双有源区结构4.7 μm中波红外量子级联金宝搏188软件怎么用 器[J]. 188bet网站真的吗 , 2024, 17(5): 1042-1049. doi: 10.37188/CO.2023-0239
引用本文: 王渝沛, 章宇航, 罗晓玥, 钱晨灏, 程洋, 赵武, 魏志祥, 韩迪仪, 孙方圆, 王俊, 周大勇. 双有源区结构4.7 μm中波红外量子级联金宝搏188软件怎么用 器[J]. 188bet网站真的吗 , 2024, 17(5): 1042-1049. doi: 10.37188/CO.2023-0239
WANG Yu-pei, ZHANG Yu-hang, LUO Xiao-yue, QIAN Chen-hao, CHENG Yang, ZHAO Wu, WEI Zhi-xiang, HAN Di-yi, SUN Fang-yuan, WANG Jun, ZHOU Da-yong. 4.7 μm mid-wave infrared quantum cascade laser with double active region structure[J]. Chinese Optics, 2024, 17(5): 1042-1049. doi: 10.37188/CO.2023-0239
Citation: WANG Yu-pei, ZHANG Yu-hang, LUO Xiao-yue, QIAN Chen-hao, CHENG Yang, ZHAO Wu, WEI Zhi-xiang, HAN Di-yi, SUN Fang-yuan, WANG Jun, ZHOU Da-yong. 4.7 μm mid-wave infrared quantum cascade laser with double active region structure[J]. Chinese Optics, 2024, 17(5): 1042-1049. doi: 10.37188/CO.2023-0239

双有源区结构4.7 μm中波红外量子级联金宝搏188软件怎么用 器

基金项目: 国家重点研发计划(No. 2018YFB1107300)
详细信息
    作者简介:

    王 俊(1965—),男,湖北仙桃人,博士,教授,博士生导师,1997 年于加拿大McMaster大学取得博士学位,主要从事半导体金宝搏188软件怎么用 器方面的研究。E-mail:wjdz@scu.edu.cn

  • 中图分类号: TP394.1;TH691.9

4.7 μm mid-wave infrared quantum cascade laser with double active region structure

Funds: Supported by the National Key Research and Development Program of China (No. 2018YFB1107300)
More Information
  • 摘要:

    本文报道了一种基于双有源区的4.7 μm中波红外量子级联金宝搏188软件怎么用 器,脊宽为9.5 μm,可实现室温连续基横模工作。通过在单有源区中心插入0.8 μm InP间隔层,将原有的单有源区转变成双有源区结构,可显著降低器件有源区的峰值温度,同时抑制高阶横模的产生。在288 K温度下,腔长为5 mm的双有源区器件的阈值电流密度为1.14 kA/cm2,连续输出功率为0.71 W,快轴发散角为27.3°,慢轴发散角为18.1°。同采用常规单有源区结构器件相比,采用双有源区结构的器件,其最大光输出功率未出现退化,同时器件慢轴方向由多模变化为基横模,光束质量得到了显著改善。本工作为改善高功率中波量子级联金宝搏188软件怎么用 器的慢轴光束质量提供了一种解决思路。

     

  • 图 1  (a)有限元仿真结构示意图;(b) 在有源区插入不同厚度InP的横向模态的相对品质因子图

    Figure 1.  (a) Schematic diagram of the finite element simulation structure; (b) relative figure of merit for transverse modes when inserting different InP thicknesses in active region

    图 2  (a)单有源区器件及(b)双有源区器件热学仿真结果

    Figure 2.  Thermal simulation results of (a) single active region device and (b) double active region device

    图 3  Sample 1和Sample 2的(a)X射线双晶衍射及其(b)放大图

    Figure 3.  (a) X-ray double diffraction and their (b) enlarged images of Sample 1 and Sample 2

    图 4  (a) Device 1和(c) Device 2的结构示意图;(b) Device 1和(d) Device 2前腔面在电镜下的横截面图

    Figure 4.  Schematic diagram of (a) Device 1 and (c) Device 2; cross-sectional SEM images of the front cavity of (b) Device 1 and (d) Device 2

    图 5  (a) Device 1和Device 2在连续模式下的PIV曲线;(b) Device 1和Device 2在阈值电流下的光谱

    Figure 5.  (a) PIV curves of Device 1 and Device 2 in continuous wave; (b) spectra of Device 1 and Device 2 at threshold current

    图 6  Device 1和Device 2在(a)慢轴方向及(b)快轴方向的远场

    Figure 6.  Far fields of Device 1 and Device 2 in the (a) slow axis direction and (b) fast axis directions

    表  1  不同材料不同掺杂浓度的有效折射率[25]

    Table  1.   Effective refractive indexes of different materials with different doping conditions

    Materials Doping density Refractive index
    InP substrate 2×1017 3.084+2.00000E-4i
    InP 2×1016 3.091+2.00000E-5i
    InGaAs 2×1016 3.393+7.88405E-5i
    Active 2×1017 3.245+4.01336E-5i
    InP 2×1017 3.084+2.00000E-4i
    InP 1×1017 3.088+1.00000E-4i
    InP 5×1018 2.893+5.00000E-3i
    InP 2×1019 2.188+2.70000E-2i
    Au / 3.319+1.84110E+1i
    Si3N4 / 1.358+6.50000E-4i
    Fe:InP / 3.099+6.34895E-8i
    下载: 导出CSV

    表  2  300 K温度下不同材料的热导率[28]

    Table  2.   Thermal conductivities of different materials at 300 K temperature

    Materials Thermal conductivity/W·m−1·K−1
    InP 72.18
    InGaAs 4.64
    Active(longitudinal) 0.76
    Active(lateral) 4.48
    Si3N4 13.9
    AuSn 57
    Cu 398.03
    AlN 257.5
    下载: 导出CSV
    Baidu
  • [1] FAIST J, CAPASSO F, SIVCO D L, et al. Quantum cascade laser[J]. Science, 1994, 264(5158): 553-556. doi: 10.1126/science.264.5158.553
    [2] 赵越, 张锦川, 刘传威, 等. 中远红外量子级联金宝搏188软件怎么用 器研究进展(特邀)[J]. 红外与金宝搏188软件怎么用 工程,2018,47(10):1003001. doi: 10.3788/IRLA201847.1003001

    ZHAO Y, ZHANG J CH, LIU CH W, et al. Progress in mid-and far-infrared quantum cascade laser (invited)[J]. Infrared and Laser Engineering, 2018, 47(10): 1003001. (in Chinese). doi: 10.3788/IRLA201847.1003001
    [3] DELY H, BONAZZI T, SPITZ O, et al. 10 Gbit s−1 free space data transmission at 9 µm wavelength with unipolar quantum optoelectronics[J]. Laser & Photonics Reviews, 2022, 16(2): 2100414.
    [4] SPITZ O, DIDIER P, DURUPT L, et al. Free-space communication with directly modulated mid-infrared quantum cascade devices[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28(1): 1200109.
    [5] 温志渝, 王玲芳, 陈刚. 基于量子级联金宝搏188软件怎么用 器的气体检测系统的发展与应用[J]. 光谱学与光谱分析,2010,30(8):2043-2048. doi: 10.3964/j.issn.1000-0593(2010)08-2043-06

    WEN ZH Y, WANG L F, CHEN G. Development and application of quantum cascade laser based gas sensing system[J]. Spectroscopy and Spectral Analysis, 2010, 30(8): 2043-2048. (in Chinese). doi: 10.3964/j.issn.1000-0593(2010)08-2043-06
    [6] FATHOLOLOUMI S, DUPONT E, CHAN C W I, et al. Terahertz quantum cascade lasers operating up to ~200 K with optimized oscillator strength and improved injection tunneling[J]. Optics Express, 2012, 20(4): 3866-3876. doi: 10.1364/OE.20.003866
    [7] LI L H, CHEN L, ZHU J X, et al. Terahertz quantum cascade lasers with> 1 W output powers[J]. Electronics Letters, 2014, 50(4): 309-311. doi: 10.1049/el.2013.4035
    [8] VITIELLO M S, SCALARI G, WILLIAMS B, et al. Quantum cascade lasers: 20 years of challenges[J]. Optics Express, 2015, 23(4): 5167-5182. doi: 10.1364/OE.23.005167
    [9] BECK M, HOFSTETTER D, AELLEN T, et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature[J]. Science, 2002, 295(5553): 301-305. doi: 10.1126/science.1066408
    [10] LYAKH A, MAULINI R, TSEKOUN A, et al. 3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach[J]. Applied Physics Letters, 2009, 95(14): 141113. doi: 10.1063/1.3238263
    [11] BAI Y B. High wall plug efficiency quantum cascade lasers[D]. Xi’an: Northwestern University, 2011.
    [12] BAI Y, BANDYOPADHYAY N, TSAO S, et al. Highly temperature insensitive quantum cascade lasers[J]. Applied Physics Letter, 2010, 97(25): 251104. doi: 10.1063/1.3529449
    [13] WANG F, SLIVKEN S, WU D H, et al. Continuous wave quantum cascade lasers with 5.6 W output power at room temperature and 41% wall-plug efficiency in cryogenic operation[J]. AIP Advances, 2020, 10(5): 055120. doi: 10.1063/5.0003318
    [14] NIU SH, YANG P CH, HUANG R X, et al. High power, broad tuning quantum cascade laser at λ ~8.9 µm[J]. Optics Express, 2023, 31(25): 41252-41258. doi: 10.1364/OE.505349
    [15] WANG C A, HUANG R K, GOYAL A, et al. OMVPE growth of highly strain-balanced GaInAs/AlInAs/InP for quantum cascade lasers[J]. Journal of Crystal Growth, 2008, 310(23): 5191-5197. doi: 10.1016/j.jcrysgro.2008.07.100
    [16] ROBERTS J S, GREEN R P, WILSON L R, et al. Quantum cascade lasers grown by metalorganic vapor phase epitaxy[J]. Applied Physics Letters, 2003, 82(24): 4221-4223. doi: 10.1063/1.1583858
    [17] BOTEZ D, KIRCH J D, BOYLE C, et al. High-efficiency, high-power mid-infrared quantum cascade lasers [Invited][J]. Optical Materials Express, 2018, 8(5): 1378-1398. doi: 10.1364/OME.8.001378
    [18] FEI T, ZHAI SH Q, ZHANG J CH, et al. 3 W continuous-wave room temperature quantum cascade laser grown by metal-organic chemical vapor deposition[J]. Photonics, 2023, 10(1): 47. doi: 10.3390/photonics10010047
    [19] FEI T, ZHAI SH Q, ZHANG J CH, et al. High power λ~ 8.5 μm quantum cascade laser grown by MOCVD operating continuous-wave up to 408 K[J]. Journal of Semiconductors, 2021, 42(11): 112301. doi: 10.1088/1674-4926/42/11/112301
    [20] SUN Y Q, YIN R, ZHANG J CH, et al. High-performance quantum cascade lasers at λ ~9 µm grown by MOCVD[J]. Optics Express, 2022, 30(21): 37272-37280. doi: 10.1364/OE.469573
    [21] 庞磊, 程洋, 赵武, 等. 基于MOCVD生长的4.6 μm中红外量子级联金宝搏188软件怎么用 器[J]. 红外与金宝搏188软件怎么用 工程,2022,51(6):20210980. doi: 10.3788/IRLA20210980

    PANG L, CHENG Y, ZHAO W, et al. Mid-infrared quantum cascade laser grown by MOCVD at 4.6 µm[J]. Infrared and Laser Engineering, 2022, 51(6): 20210980. (in Chinese). doi: 10.3788/IRLA20210980
    [22] 孙永强, 费腾, 黎昆, 等. MOCVD生长的瓦级中波红外高功率量子级联金宝搏188软件怎么用 器[J]. 光学学报,2022,42(22):2214002. doi: 10.3788/AOS202242.2214002

    SUN Y Q, FEI T, LI K, et al. MOCVD-based mid-wave infrared quantum cascade lasers with watt-level power[J]. Acta Optica Sinica, 2022, 42(22): 2214002. (in Chinese). doi: 10.3788/AOS202242.2214002
    [23] SUTTINGER M, GO R, AZIM A, et al. High brightness operation in broad area quantum cascade lasers with reduced number of stages[C]. Proceedings of 2019 Conference on Lasers and Electro-Optics, IEEE, 2019: 1-2.
    [24] BISMUTO A, GRESCH T, BÄCHLE A, et al. Large cavity quantum cascade lasers with InP interstacks[J]. Applied Physics Letters, 2008, 93(23): 231104. doi: 10.1063/1.3042213
    [25] RYU J H, KIRCH J D, KNIPFER B, et al. Beam stability of buried-heterostructure quantum cascade lasers employing HVPE regrowth[J]. Optics Express, 2021, 29(2): 2819-2826. doi: 10.1364/OE.414489
    [26] XIE F, CANEAU C, LEBLANC H P, et al. Room temperature CW operation of short wavelength quantum cascade lasers made of strain balanced Ga xIn1- xAs/Al yIn1- y as material on InP substrates[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(5): 1445-1452. doi: 10.1109/JSTQE.2011.2136325
    [27] YU N F, DIEHL L, CUBUKCU E, et al. Near-field imaging of quantum cascade laser transverse modes[J]. Optics Express, 2007, 15(20): 13227-13235. doi: 10.1364/OE.15.013227
    [28] LEE H K, YU J S. Thermal effects in quantum cascade lasers at λ ~4.6 μm under pulsed and continuous-wave modes[J]. Applied Physics B, 2012, 106(3): 619-627.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  248
  • HTML全文浏览量:  157
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-03
  • 修回日期:  2024-01-30
  • 录用日期:  2024-03-13
  • 网络出版日期:  2024-05-10

目录

    /

    返回文章
    返回
    Baidu
    map