留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高衍射效率偏振无关合束光栅的双层梯形槽形设计与分析

孙澳 王瑞鹏 孙雨琦 王新宇 李文昊 姜岩秀

孙澳, 王瑞鹏, 孙雨琦, 王新宇, 李文昊, 姜岩秀. 高衍射效率偏振无关合束光栅的双层梯形槽形设计与分析[J]. 188bet网站真的吗 . doi: 10.37188/CO.2024-0083
引用本文: 孙澳, 王瑞鹏, 孙雨琦, 王新宇, 李文昊, 姜岩秀. 高衍射效率偏振无关合束光栅的双层梯形槽形设计与分析[J]. 188bet网站真的吗 . doi: 10.37188/CO.2024-0083
SUN Ao, WANG Rui-Peng, SUN Yu-Qi, WANG Xin-Yu, LI Wen-Hao, JIANG Yan-Xiu. Design and analysis of double-layer trapezoidal groove of polarization-independent beam-combination gratings with high diffraction efficiency[J]. Chinese Optics. doi: 10.37188/CO.2024-0083
Citation: SUN Ao, WANG Rui-Peng, SUN Yu-Qi, WANG Xin-Yu, LI Wen-Hao, JIANG Yan-Xiu. Design and analysis of double-layer trapezoidal groove of polarization-independent beam-combination gratings with high diffraction efficiency[J]. Chinese Optics. doi: 10.37188/CO.2024-0083

高衍射效率偏振无关合束光栅的双层梯形槽形设计与分析

基金项目: 国家重点研发计划资助(No. 2023YFF0715802);国自然青年基金(No. 12105288);中国科学院青年创新促进会项目(No. 2022218);吉林省自然科学基金项目(No. 20210101139JC);国家自然科学基金联合项目(No. U21A20509)
详细信息
    作者简介:

    孙 澳(1999—),男,吉林松原人,硕士研究生,2021年于长春理工大学获得学士学位,主要从事偏振无关合束光栅设计与制备方面的研究。E-mail:Sa13331759089@163.com

    姜岩秀(1987—),女,吉林舒兰人,博士,副研究员, 2015 年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事变栅距全息光栅设计与制作技术研究。E-mail:jiangyanxiup@163.com

  • 中图分类号: TP394.1;TH691.9

Design and analysis of double-layer trapezoidal groove of polarization-independent beam-combination gratings with high diffraction efficiency

Funds: Supported by National Key R & D Program of China (No. 2023YFF0715802); National Natural Science Foundation of China (No. 12105288); Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2022218); Natural Science Foundation of Jilin Province (No. 20210101139JC); National Natural Science Foundation of China (No. U21A20509)
More Information
  • 摘要:

    为了满足强金宝搏188软件怎么用 系统中合束光栅的宽带、高衍射效率及偏振无关的需求,本文提出了一种双层梯形结构的偏振无关合束光栅。首先,基于严格耦合波理论,建立了一种以粒子群优化算法为核心的偏振无关合束光栅设计模型,通过随机生成特征波长实现效率特性寻优。然后,详细分析了单层梯形和双层梯形结构光栅的槽深、占宽比、侧壁倾角等结构参数对光栅衍射效率及带宽的影响。最后,对两种结构光栅的电场增强特性进行分析讨论。结果表明,双层梯形结构偏振无关合束光栅在51 nm(1038 nm−1089 nm)带宽范围内实现99%以上的理论衍射效率,相比传统单层梯形结构具有更大的工艺容差,容差范围内均满足30 nm带宽和98%的高衍射效率,同时具有更低的光栅近场增强,可以拥有更强的抗金宝搏188软件怎么用 损伤能力。本文提出的宽带高衍射效率双层梯形结构光栅可以提高金宝搏188软件怎么用 系统的输出功率,在金宝搏188软件怎么用 合束领域具有重大的应用价值。

     

  • 图 1  实时衍射效率和评价函数值以及寻优结构参数示意图。(a)寻优时随机波长点的TE、TM以及平均衍射效率;(b)寻优迭代时评价函数值的变化情况;(c) 寻优参数的粒子实时位置

    Figure 1.  Real time diffraction efficiency and evaluation function values and optimization structure parameters. (a) TE, TM and average diffraction efficiency of random wavelength points during optimization; (b) The change of evaluation function value during optimization iteration; (c) Optimize the particle real-time position of the parameter

    图 2  单层梯形结构偏振无关合束光栅

    Figure 2.  Single-layer trapezoidal structure polarization-independent combined beam grating

    图 3  单层梯形光栅在中心波长反射-1级自准直入射时的理论衍射效率

    Figure 3.  Theoretical diffraction efficiency of a single-layer trapezoidal grating at the center wavelength reflected -1 order autocollimation incident

    图 4  槽深(Depth)及占宽比(Duty cycle)变化对TE和TM平均衍射效率的影响

    Figure 4.  Effect of slot Depth and Duty cycle on the average diffraction efficiency of TE and TM

    图 5  双层梯形结构偏振无关合束光栅

    Figure 5.  Double trapezoidal structure polarization-independent combined beam grating

    图 6  双层梯形光栅在中心波长反射-1级自准直入射时的理论衍射效率

    Figure 6.  Theoretical diffraction efficiency of double-layer trapezoidal grating at center wavelength reflectation-1 self-collimation incident

    图 7  槽深(Depth)及占宽比(Duty cycle)变化对TE和TM平均衍射效率的影响

    Figure 7.  Effect of groove Depth and Duty cycle on the average diffraction efficiency of TE and TM

    图 8  侧壁倾角变化对TE和TM平均衍射效率的影响。(a)侧壁倾角容差,(b)76°刻蚀深度和占宽比容差,(c)78°刻蚀深度和占宽比容差,(d)82°刻蚀深度和占宽比容差

    Figure 8.  Effect of sidewall Angle variation on the average diffraction efficiency of TE and TM. (a) sidewall dip tolerance, (b) 76° etch depth and specific width tolerance, (c) 78° etch depth and specific width tolerance, (d) 82° etch depth and specific width tolerance

    图 9  光栅近场计算模型

    Figure 9.  Grating near-field calculation model

    图 10  单层梯形结构Ey分量的振幅值。(a)TM;(b)TE

    Figure 10.  Amplitude value of Ey component of single-layer trapezoidal structure.(a)TM;(b)TE

    图 11  双层梯形结构Ey分量的振幅值。(a)TM;(b)TE

    Figure 11.  Amplitude value of Ey component of double trapezoidal structure. (a)TM;(b)TE

    Baidu
  • [1] 游道明, 谭满清, 郭文涛, 等. 光纤光栅外腔金宝搏188软件怎么用 器光学薄膜的研制[J]. 中国光学(中英文),2023,16(2):447-457. doi: 10.37188/CO.EN.2022-0010

    YOU D M, TAN M Q, GUO W T, et al. Design and fabrication of an optical film for fiber bragg grating external cavity diode lasers[J]. Chinese Optics, 2023, 16(2): 447-457. (in Chinese). doi: 10.37188/CO.EN.2022-0010
    [2] 田思聪, 佟存柱, 王立军, 等. 长春光机所高速垂直腔面发射金宝搏188软件怎么用 器研究进展[J]. 中国光学(中英文),2022,15(5):946-953. doi: 10.37188/CO.2022-0136

    TIAN S C, TONG C ZH, WANG L J, et al. Research progress of high-speed vertical-cavity surface-emitting laser in CIOMP[J]. Chinese Optics, 2022, 15(5): 946-953. (in Chinese). doi: 10.37188/CO.2022-0136
    [3] 吴玲, 娄岩, 侯欣宜, 等. 2-μm MOPA结构全光纤金宝搏188软件怎么用 器输出特性研究[J]. 中国光学(中英文),2023,16(2):399-406. doi: 10.37188/CO.2022-0191

    WU L, LOU Y, HOU X Y, et al. Output characteristics of an all-fiber laser with a 2-μm MOPA structure[J]. Chinese Optics, 2023, 16(2): 399-406. (in Chinese). doi: 10.37188/CO.2022-0191
    [4] LIU J Q, ZENG L F, WANG X L, et al. Optimization and demonstration of a bidirectional output linear-cavity fiber laser with a record high power of 2×4 kW[J]. Optics & Laser Technology, 2024, 169: 110031.
    [5] LI S CH, XU J M, LIANG J R, et al. Multi-wavelength random fiber laser with a spectral-flexible characteristic[J]. Photonics Research, 2023, 11(2): 159-164. doi: 10.1364/PRJ.475233
    [6] HUANG B, WANG J Q, SHAO X P. Fiber-based techniques to suppress stimulated brillouin scattering[J]. Photonics, 2023, 10(3): 282. doi: 10.3390/photonics10030282
    [7] CHEN CH W, NGUYEN L V, WISAL K, et al. Mitigating stimulated Brillouin scattering in multimode fibers with focused output via wavefront shaping[J]. Nature Communications, 2023, 14(1): 7343. doi: 10.1038/s41467-023-42806-1
    [8] LIU ZH J, WANG Q, ZHANG W SH, et al. Suppression of stimulated Brillouin scattering by multicolor alternating-polarization bundle light in inertial confinement fusion[J]. Physics of Plasmas, 2023, 30(3): 032703. doi: 10.1063/5.0137403
    [9] DAWSON J W, MESSERLY M J, BEACH R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266. doi: 10.1364/OE.16.013240
    [10] DONG L, BALLATO J, KOLIS J. Revising power scaling limits of diffraction-limited fiber amplifiers[J]. Proceedings of SPIE, 2024, 12865: 128650H.
    [11] COOK J, SINCORE A, VAIL N, et al. 100 W, tunable in-band thulium fiber amplifier pumped by incoherently combined 1.9 µm fiber lasers[J]. Optics Express, 2023, 31(18): 29245-29254. doi: 10.1364/OE.487601
    [12] GAO Q, LI ZH, ZHAO W, et al. Spectral beam combining of fiber lasers with 32 channels[J]. Optical Fiber Technology, 2023, 78: 103311. doi: 10.1016/j.yofte.2023.103311
    [13] LI J Y, YANG ZH D, WANG Y Y, et al. A novel non-confocal two-stage dish concentrating photovoltaic/thermal hybrid system utilizing spectral beam splitting technology: optical and thermal performance investigations[J]. Renewable Energy, 2023, 206: 609-622. doi: 10.1016/j.renene.2023.02.078
    [14] ZHANG Q S, WU ZH, CAI W, et al. Spectral-combined beam characteristics based on external cavity feedback diode laser array[J]. Optical Engineering, 2023, 62(5): 056101.
    [15] YU X Y, YANG W J, SHEN CH Y, et al. Polarization beam combining by fused silica subwavelength grating[J]. Optics Communications, 2024, 554: 130135. doi: 10.1016/j.optcom.2023.130135
    [16] HONEA E, AFZAL R S, SAVAGE-LEUCHS M, et al. Advances in fiber laser spectral beam combining for power scaling[J]. Proceedings of SPIE, 2016, 9730: 97300Y.
    [17] 马毅, 颜宏, 彭万敬, 等. 基于多路窄线宽光纤金宝搏188软件怎么用 的9.6 kW共孔径光谱合成光源[J]. 中国金宝搏188软件怎么用 ,2016,43(9):0901009. doi: 10.3788/CJL201643.0901009

    MA Y, YAN H, PENG W J, et al. 9.6 kW Common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers[J]. Chinese Journal of Lasers, 2016, 43(9): 0901009. (in Chinese). doi: 10.3788/CJL201643.0901009
    [18] 郑也, 杨依枫, 赵翔, 等. 高功率光纤金宝搏188软件怎么用 光谱合成技术的研究进展[J]. 中国金宝搏188软件怎么用 ,2017,44(2):0201002. doi: 10.3788/CJL201744.0201002

    ZHENG Y, YANG Y F, ZHAO X, et al. Research progress on spectral beam combining technology of high-power fiber lasers[J]. Chinese Journal of Lasers, 2017, 44(2): 0201002. (in Chinese). doi: 10.3788/CJL201744.0201002
    [19] 晋云霞, 韩昱行, 曹红超, 等. 近红外强金宝搏188软件怎么用 与反射式全息平面衍射光栅的交织发展[J]. 中国金宝搏188软件怎么用 ,2024,51(11):1101028.

    JIN Y X, HAN Y X, CAO H CH, et al. Intertwined development of near-infrared high-power lasers and reflective holographic surface-relief diffraction gratings[J]. Chinese Journal of Lasers, 2024, 51(11): 1101028. (in Chinese).
    [20] HU A D, ZHOU CH H, CAO H CH, et al. Polarization-independent wideband mixed metal dielectric reflective gratings[J]. Applied Optics, 2012, 51(20): 4902-4906. doi: 10.1364/AO.51.004902
    [21] 申碧瑶, 曾理江, 李立峰, 等. 多层介质膜偏振无关光栅的研制[J]. 强金宝搏188软件怎么用 与粒子束,2015,27(11):111013. doi: 10.11884/HPLPB201527.111013

    SHEN B Y, ZENG L J, LI L F, et al. Fabrication of polarization independent gratings made on multilayer dielectric thin film substrates[J]. High Power Laser and Particle Beams, 2015, 27(11): 111013. (in Chinese). doi: 10.11884/HPLPB201527.111013
    [22] CHEN J M, ZHANG Y B, WANG Y L, et al. Polarization-independent broadband beam combining grating with over 98% measured diffraction efficiency from 1023 to 1080 nm[J]. Optics Letters, 2017, 42(19): 4016-4019. doi: 10.1364/OL.42.004016
    [23] CAO H CH, WU J, YU J J, et al. High-efficiency polarization-independent wideband multilayer dielectric reflective bullet-alike cross-section fused-silica beam combining grating[J]. Applied Optics, 2018, 57(4): 900-904. doi: 10.1364/AO.57.000900
    [24] CHO H J, KIM S J, KIM K D, et al. Simply structured polarization-independent high efficiency multilayer dielectric gratings[J]. Applied Optics, 2022, 61(28): 8446-8453. doi: 10.1364/AO.469253
    [25] 朱春霖, 焦庆斌, 谭鑫, 等. 应用于亚波长角向偏振金属光栅设计的快速收敛粒子群算法优化[J]. 光学学报,2019,39(7):0705002. doi: 10.3788/AOS201939.0705002

    ZHU CH L, JIAO Q B, TAN X, et al. Fast convergent particle swarm optimization algorithm for subwavelength azimuthally polarized metal grating design[J]. Acta Optica Sinica, 2019, 39(7): 0705002. (in Chinese). doi: 10.3788/AOS201939.0705002
    [26] FANG J ZH, LIU W B, CHEN L W, et al. A survey of algorithms, applications and trends for particle swarm optimization[J]. International Journal of Network Dynamics and Intelligence, 2023, 2(1): 24-50.
    [27] NAYAK J, SWAPNAREKHA H, NAIK B, et al. 25 Years of particle swarm optimization: flourishing voyage of two decades[J]. Archives of Computational Methods in Engineering, 2023, 30(3): 1663-1725. doi: 10.1007/s11831-022-09849-x
    [28] 唐晋发, 顾培夫, 刘旭, 等. 现代光学薄膜技术[M]. 杭州: 浙江大学出版社, 2006.

    TANG J F, GU P F, LIU X, et al. Modern Optical Thin Film Technology[M]. Hangzhou: Zhejiang University Press, 2006. (in Chinese).
    [29] LI L X, LIU Q, CHEN J M, et al. Polarization-independent broadband dielectric bilayer gratings for spectral beam combining system[J]. Optics Communications, 2017, 385: 97-103. doi: 10.1016/j.optcom.2016.10.048
    [30] MAO X Y, LI CH M, QIU K Q, et al. Design and fabrication of 1300-line/mm polarization-independent reflection gratings for spectral beam combining[J]. Optics Communications, 2020, 458: 124883. doi: 10.1016/j.optcom.2019.124883
    [31] CHEN J M, ZHANG Y B, WANG Y L, et al. Polarization-independent broadband beam combining grating with over 98% measured diffraction efficiency from 1023 to 1080 nm[J]. Optics Letters, 2017, 42(19): 4016-4019. (查阅网上资料, 本条文献与第22条文献重复, 请确认) .
    [32] HAN Y X, CAO H CH, KONG F Y, et al. All- and mixed-dielectric grating for Nd: glass-based high-energy pulse compression[J]. High Power Laser Science and Engineering, 2023, 11: e60. doi: 10.1017/hpl.2023.39
    [33] MOHARAM M G, POMMET D A, GRANN E B, et al. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach[J]. Journal of the Optical Society of America A, 1995, 12(5): 1077-1086. doi: 10.1364/JOSAA.12.001077
    [34] LALANNE P, JUREK M P. Computation of the near-field pattern with the coupled-wave method for transverse magnetic polarization[J]. Journal of Modern Optics, 1998, 45(7): 1357-1374. doi: 10.1080/09500349808230634
    [35] GAO F H, WANG CH CH, TANG X G, et al. Near field analysis for periodic diffractive gratings using Fourier modal method[J]. Microelectronic Engineering, 2006, 83(4-9): 1062-1066. doi: 10.1016/j.mee.2006.01.044
  • 加载中
图(11)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  102
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-08
  • 录用日期:  2024-07-15
  • 网络出版日期:  2024-08-21

目录

    /

    返回文章
    返回
    Baidu
    map