留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超疏水阵列辅助电火花增强LIBS测定液相样品中的稀土元素

沈新建 罗兹循 吴建 李斌 刘燕德 陈楠

沈新建, 罗兹循, 吴建, 李斌, 刘燕德, 陈楠. 超疏水阵列辅助电火花增强LIBS测定液相样品中的稀土元素[J]. 188bet网站真的吗 . doi: 10.37188/CO.2024-0107
引用本文: 沈新建, 罗兹循, 吴建, 李斌, 刘燕德, 陈楠. 超疏水阵列辅助电火花增强LIBS测定液相样品中的稀土元素[J]. 188bet网站真的吗 . doi: 10.37188/CO.2024-0107
SHEN Xin-jian, LUO Zi-xun, WU Jian, LI Bin, LIU Yan-de, CHEN Nan. Determination of rare earth elements in liquid-phase samples by superhydrophobic array-assisted spark-discharge LIBS[J]. Chinese Optics. doi: 10.37188/CO.2024-0107
Citation: SHEN Xin-jian, LUO Zi-xun, WU Jian, LI Bin, LIU Yan-de, CHEN Nan. Determination of rare earth elements in liquid-phase samples by superhydrophobic array-assisted spark-discharge LIBS[J]. Chinese Optics. doi: 10.37188/CO.2024-0107

超疏水阵列辅助电火花增强LIBS测定液相样品中的稀土元素

cstr: 32171.14.CO.2024-0107
基金项目: 国家重点研发计划(No. 2022YFD2001804,No. 2023YFD2001301);国家自然科学基金(No. 12304447);江西省自然科学基金(No. 20242BAB212025)
详细信息
    作者简介:

    沈新建(1998—),男,江西上饶人,本科,无,硕士研究生,2022年于华东交通大学获得学士学位,主要从事稀土元素金宝搏188软件怎么用 诱导击穿光谱检测方面的研究。E-mail:2022038085500042@ecjtu.edu.cn

    陈 楠(1992—),男,江西赣州人,博士,讲师,硕士生导师,2015年于贵州大学测控技术与仪器专业获得学士学位,2018年于吉林大学获得工学硕士学位,2022年于中科院微电子研究所获得工学博士学位。主主要从事光电智能传感、金宝搏188软件怎么用 光谱学等方面的研究。E-mail:chennan@ecjtu.edu.cn

  • 中图分类号: TN2

Determination of rare earth elements in liquid-phase samples by superhydrophobic array-assisted spark-discharge LIBS

Funds: National Key Research and Development Program of China (No. 2022YFD2001804, No. 2023YFD2001301); National Natural Science Foundation of China (No. 12304447); Natural Science Foundation of Jiangxi Province (No. 20242BAB212025)
More Information
  • 摘要:

    快速测定液相样品中的稀土元素(REEs)对离子吸附型稀土资源勘探与开发、萃取过程质量控制、稀土资源循环利用以及核工业废水监测等领域具有重要意义。为了降低金宝搏188软件怎么用 诱导击穿光谱(LIBS)对液体样品中REEs的检出限,本研究采用超疏水阵列辅助电火花增强金宝搏188软件怎么用 诱导击穿光谱法(SHA-SD-LIBS)测定液相样品中的REEs。选择最佳的实验条件,以La II 394.91 nm、Er 402.051 nm、Ce II 418.66 nm、Nd II 424.738 nm、Gd II 443.063 nm和Pr 492.46 nm作为特征谱线,对6种不同浓度的稀土元素(La、Er、Ce、Nd、Gd、Pr)溶液建立标定曲线进行定量分析。结果表明,各标定曲线拟合系数R²均达到0.99以上,相应的检出限分别为0.007 μg/mL、0.045 μg/mL、0.011 μg/mL、0.019 μg/mL、0.041 μg/mL和0.008 μg/mL。与常规LIBS方法相比,提出的方法可以在制样简单、低成本的前提下显著降低液相样品REEs的检出限。可为快速、准确测出液相样品中的稀土元素种类、含量提供新思路。

     

  • 图 1  SD-LIBS设置示意图

    Figure 1.  Schematic diagram of SD-LIBS setup

    图 2  采用超疏水阵列和电火花结合增强的典型的稀土LIBS光谱

    Figure 2.  Typical rare-earth LIBS spectra enhanced using a combination of superhydrophobic arrays and spark-discharge

    图 3  (a)超疏水阵列衬底制备及实验过程;(b)液相稀土在超疏水阵列上的亲水区域浓缩过程和接触角;(c)载玻片(上)和超疏水阵列(下)下液相稀土液滴和烘干后的富集区域

    Figure 3.  (a) Superhydrophobic array substrate preparation and experimental process (b) Concentration process and contact angle of hydrophilic regions of liquid-phase rare earths on superhydrophobic arrays (c) Liquid-phase rare earth droplets and enriched regions after drying under slides (top) and superhydrophobic arrays (bottom)

    图 4  使用载玻片和SHA衬底下的光谱强度(a)和RSD(b)

    Figure 4.  Spectral intensities (a) and RSD (b) using slides and SHA substrate

    图 5  使用SHA-LIBS和SHA-SD-LIBS下的光谱强度(a)和RSD(b)

    Figure 5.  Spectral intensity (a) and RSD (b) under the use of SHA-LIBS and SHA-SD-LIBS

    图 6  载玻片、SHA-LIBS和SHA-SD-LIBS下的6种稀土元素(La、Er、Ce、Nd、Gd、Pr)的校正曲线,误差条反映了10个光谱的标准偏差。

    Figure 6.  Calibration curves for six rare earth elements (La, Er, Ce, Nd, Gd, Pr) under slide, SHA-LIBS, and SHA-SD-LIBS, with error bars reflecting the standard deviation of 10 spectra.

    表  1  各稀土元素在标准溶液中的浓度(μg/mL)

    Table  1.   Concentration of each rare earth element in standard solution (μg/mL)

    Sample No.LaErCeNdGdPr
    10.11.50.60.751.00.1
    20.220.71.01.50.2
    30.32.50.81.2520.3
    40.430.91.52.50.4
    50.53.51.01.7530.5
    60.641.123.50.6
    下载: 导出CSV

    表  2  采用不方法测定稀土元素的平均相对标准偏差(ARSD)和检出限(LOD)

    Table  2.   Mean relative standard deviation (ARSD) and limit of detection (LOD) of rare earth elements determined using different methods.

    Element ARSD(%) LOD(μg/mL)
    SHA-SD-
    LIBS
    SHA-
    LIBS
    LIBS SHA-SD-
    LIBS
    SHA-
    LIBS
    LIBS
    La 3.83 4.22 9.82 0.007 0.013 0.079
    Er 4.47 5.23 10.33 0.045 0.065 0.697
    Ce 4.29 4.47 11.38 0.011 0.015 0.398
    Nd 4.31 4.37 9.74 0.019 0.029 0.608
    Gd 4.87 4.93 10.74 0.041 0.053 0.755
    Pr 4.18 4.32 9.71 0.008 0.013 0.079
    下载: 导出CSV
    Baidu
  • [1] BALARAM V. Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact[J]. Geoscience Frontiers, 2019, 10(4): 1285-1303. doi: 10.1016/j.gsf.2018.12.005
    [2] 胡家乐, 薛冬峰. 稀土离子特性与稀土功能材料研究进展[J]. 应用化学,2020,37(3):245-255. doi: 10.11944/j.issn.1000-0518.2020.03.190350

    HU J L, XUE D F. Research progress on the characteristics of rare earth ions and rare earth functional materials[J]. Chinese Journal of Applied Chemistry, 2020, 37(3): 245-255. (in Chinese). doi: 10.11944/j.issn.1000-0518.2020.03.190350
    [3] MIGASZEWSKI Z M, GAŁUSZKA A. The characteristics, occurrence, and geochemical behavior of rare earth elements in the environment: a review[J]. Critical Reviews in Environmental Science and Technology, 2015, 45(5): 429-471. doi: 10.1080/10643389.2013.866622
    [4] HAQUE N, HUGHES A, LIM S, et al. Rare earth elements: overview of mining, mineralogy, uses, sustainability and environmental impact[J]. Resources, 2014, 3(4): 614-635. doi: 10.3390/resources3040614
    [5] CHEN Z Y, LI ZH, CHEN J, et al. Recent advances in selective separation technologies of rare earth elements: a review[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 107104. doi: 10.1016/j.jece.2021.107104
    [6] AMBAYE T G, VACCARI M, CASTRO F D, et al. Emerging technologies for the recovery of rare earth elements (REEs) from the end-of-life electronic wastes: a review on progress, challenges, and perspectives[J]. Environmental Science and Pollution Research, 2020, 27(29): 36052-36074. doi: 10.1007/s11356-020-09630-2
    [7] R. Today. Apple sets recycled-content goals for 2025[EB/OL]. https://www.recyclingtoday.com/news/apple-sets-2025-recycled-content-goals/. (查阅网上资料,未找到本条文献引用日期信息,请补充) .
    [8] ANDRADE D F, PEREIRA-FILHO E R, AMARASIRIWARDENA D. Current trends in laser-induced breakdown spectroscopy: a tutorial review[J]. Applied Spectroscopy Reviews, 2021, 56(2): 98-114. doi: 10.1080/05704928.2020.1739063
    [9] 刘小亮, 孙少华, 孟祥厅, 等. 金宝搏188软件怎么用 诱导击穿光谱法测定稀土矿区土壤中钐含量[J]. 中国光学,2022,15(4):712-721. doi: 10.37188/CO.2022-0042

    LIU X L, SUN SH H, MENG X T, et al. Measurement of Sm in rare earth mineral soil using laser-induced breakdown spectroscopy[J]. Chinese Optics, 2022, 15(4): 712-721. (in Chinese). doi: 10.37188/CO.2022-0042
    [10] RETHFELDT N, BRINKMANN P, RIEBE D, et al. Detection of rare earth elements in minerals and soils by laser-induced breakdown spectroscopy (LIBS) using interval PLS[J]. Minerals, 2021, 11(12): 1379. doi: 10.3390/min11121379
    [11] HE ZH Q, LIU L, HE ZH Q, et al. Matrix effect suppressing in the element analysis of soils by laser-induced breakdown spectroscopy with acoustic correction[J]. Plasma Science and Technology, 2023, 25(12): 125504. doi: 10.1088/2058-6272/ace954
    [12] 李悦, 张国霞, 蔡朝晴, 等. 大气压辉光放电结合圆柱约束增强金宝搏188软件怎么用 诱导击穿光谱应用于土壤中稀土元素的检测[J]. 分析化学,2022,50(9):1384-1390.

    LI Y, ZHANG G X, CAI ZH Q, et al. Atmospheric pressure glow discharge combined with cylindrical confinement enhanced laser-induced breakdown spectroscopy for determination of rare earth in soil[J]. Chinese Journal of Analytical Chemistry, 2022, 50(9): 1384-1390. (in Chinese).
    [13] LI X Q, YAN CH H, AN D Y, et al. Rapid quantitative analysis of rare earth elements Lu and Y in rare earth ores by laser induced breakdown spectroscopy combined with iPLS-VIP and partial least squares[J]. RSC Advances, 2023, 13(22): 15347-15355. doi: 10.1039/D3RA02102E
    [14] DENG ZH W, HAO ZH Q, LIU L, et al. Detection of Y, La, Yb, and Dy elements in rare earth ores by double-pulse laser-induced breakdown spectroscopy[J]. Journal of Laser Applications, 2023, 35(2): 022003. doi: 10.2351/7.0000936
    [15] LIU Y L, WANG D M, REN X H. Rapid quantitation of coal proximate analysis by using laser-induced breakdown spectroscopy[J]. Energies, 2022, 15(8): 2728. doi: 10.3390/en15082728
    [16] MAITY U K, MANORAVI P, JOSEPH M, et al. Laser-induced breakdown spectroscopy for simultaneous determination of lighter lanthanides in actinide matrix in aqueous medium[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2022, 190: 106393. doi: 10.1016/j.sab.2022.106393
    [17] HE Q, QIU J, CHEN J F, et al. Progress in green and efficient enrichment of rare earth from leaching liquor of ion adsorption type rare earth ores[J]. Journal of Rare Earths, 2022, 40(3): 353-364. doi: 10.1016/j.jre.2021.09.011
    [18] KEERTHI K, GEORGE S D, KULKARNI S D, et al. Elemental analysis of liquid samples by laser induced breakdown spectroscopy (LIBS): challenges and potential experimental strategies[J]. Optics & Laser Technology, 2022, 147: 107622.
    [19] 侯冠宇, 王平, 佟存柱. 金宝搏188软件怎么用 诱导击穿光谱技术及应用研究进展[J]. 中国光学,2013,6(4):490-500.

    HOU G Y, WANG P, TONG C ZH. Progress in laser-induced breakdown spectroscopy and its applications[J]. Chinese Optics, 2013, 6(4): 490-500. (in Chinese).
    [20] SKOČOVSKÁ K, NOVOTNÝ J, PROCHAZKA D, et al. Optimization of liquid jet system for laser-induced breakdown spectroscopy analysis[J]. Review of Scientific Instruments, 2016, 87(4): 043116. doi: 10.1063/1.4947233
    [21] CONTRERAS V, VALENCIA R, PERALTA J, et al. Chemical elemental analysis of single acoustic-levitated water droplets by laser-induced breakdown spectroscopy[J]. Optics Letters, 2018, 43(10): 2260-2263. doi: 10.1364/OL.43.002260
    [22] WILLIAMS A N, PHONGIKAROON S. Elemental detection of cerium and gadolinium in aqueous aerosol using laser-induced breakdown spectroscopy[J]. Applied Spectroscopy, 2016, 70(10): 1700-1708. doi: 10.1177/0003702816648327
    [23] ITO Y, UEKI O, NAKAMURA S. Determination of colloidal iron in water by laser-induced breakdown spectroscopy[J]. Analytica chimica acta, 1995, 299(3): 401-405. doi: 10.1016/0003-2670(94)00313-B
    [24] TIAN H W, JIAO L Z, DONG D M. Rapid determination of trace cadmium in drinking water using laser-induced breakdown spectroscopy coupled with chelating resin enrichment[J]. Scientific Reports, 2019, 9(1): 10443. doi: 10.1038/s41598-019-46924-z
    [25] CHEN N, SHEN X J, LI B, et al. Sensitive determination of rare earth elements in liquid samples by spatial confinement assisted surface enhanced laser-induced breakdown spectroscopy[J]. Optics & Laser Technology, 2024, 170: 110279.
    [26] 任文心, 杨亮, 赵韩, 等. 金宝搏188软件怎么用 诱导击穿光谱定量分析全血中的锂元素[J]. 分析化学,2024,52(4):559-565.

    REN W X, YANG L, ZHAO H, et al. Quantitative analysis of lithium element in whole blood using laser-induced breakdown spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2024, 52(4): 559-565. (in Chinese).
    [27] DONG D M, JIAO L Z, DU X F, et al. Ultrasensitive nanoparticle enhanced laser-induced breakdown spectroscopy using a super-hydrophobic substrate coupled with magnetic confinement[J]. Chemical Communications, 2017, 53(33): 4546-4549. doi: 10.1039/C6CC09695F
    [28] ABU KASIM A F, WAKIL M A, GRANT K, et al. Aqueous ruthenium detection by microwave-assisted laser induced breakdown spectroscopy[J]. Plasma Science and Technology, 2022, 24(8): 084004. doi: 10.1088/2058-6272/ac6733
    [29] WANG M P, PAN C Y, LU Y, et al. Detection of copper in solution by laser-induced breakdown spectroscopy based on nanoparticle chip[J]. Optical Engineering, 2022, 61(6): 061408.
    [30] ALKALLAS F H, MOSTAFA A M, TRABELSI A B G, et al. Effect of single and double pulse laser-induced breakdown spectroscopy towards steel alloy in different gaseous media[J]. Materials Chemistry and Physics, 2024, 320: 129443. doi: 10.1016/j.matchemphys.2024.129443
    [31] PÉREZ-RODRÍGUEZ M, DIRCHWOLF P M, SILVA T V, et al. Fast spark discharge-laser-induced breakdown spectroscopy method for rice botanic origin determination[J]. Food chemistry, 2020, 33: 127051.
    [32] WU M F, WANG X, NIU G H, et al. Ultrasensitive and simultaneous detection of multielements in aqueous samples based on biomimetic array combined with laser-induced breakdown spectroscopy[J]. Analytical Chemistry, 2021, 93(29): 10196-10203. doi: 10.1021/acs.analchem.1c01484
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  39
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 网络出版日期:  2024-11-11

目录

    /

    返回文章
    返回
    Baidu
    map