-
摘要:
快速反射镜的工作环境一般比较恶劣,容易受到振动冲击、温度变化等影响,导致故障。本文针对最为普遍的恒偏差故障,提出了一种基于线性矩阵不等式(Linear matrix inequality, LMI)的故障观测器设计方法,旨在提高故障检测的可靠性,增强快速反射镜的稳定性以及抗干扰能力。首先,采用基于汉克尔(Hankel)矩阵的模型辨识方法得到了考虑耦合效应的两轴快速反射镜模型。然后,建立了快速反射镜系统的故障模型,采用基于LMI的方法对快速反射镜的故障观测器进行设计。最后,通过仿真与实验对该方法进行验证。结果表明,当快速反射镜的两轴发生执行器和传感器恒偏差故障时,基于黎卡提(Riccati)方程的故障观测器只能检测出其中一个轴的故障,基于LMI的故障观测器对
X 轴能在故障发生后0.1 s内检测出故障,对Y 轴能在故障发生后0.06 s内检测出故障。上述结果表明本文设计的LMI故障观测器能够更加准确地实现对快速反射镜的故障检测。Abstract:Fast steering mirror (FSM) typically operates in harsh environments, susceptible to vibrations, temperature fluctuations, and other factors, which can lead to malfunctions. Focusing on the most prevalent constant bias fault, this paper proposes an LMI-based fault observer design method, aiming to enhance the reliability of fault detection and strengthen the stability and anti-interference capabilities of the FSM. Firstly, the model identification method based on Hankel matrix is employed to identify the two-axis fast steering mirror model including the coupling effect. Then, the fault model of the fast steering mirror system is established, and the fault observer of the fast steering mirror is designed by using the LMI-based method. Finally, the proposed method is verified through simulations and experiments. The results indicate that when both axes of the fast steering mirror have constant bias faults in the actuators and sensors, the Riccati-based fault observer can only detect the fault in one axis, while the LMI-based fault observer can detect faults within 0.1 seconds after the fault of the X-axis occurs, and detect faults within 0.06 seconds after the fault of the Y-axis occurs. Therefore, the fault observer designed by the LMI method proposed in this paper can improve the fault detection performance of the fast steering mirror.
-
-
[1] 高世杰, 吴佳彬, 刘永凯, 等. 微小卫星金宝搏188软件怎么用 通信系统发展现状与趋势[J]. 中国光学,2020,13(6):1171-1181. doi: 10.37188/CO.2020-0033GAO SH J, WU J B, LIU Y K, et al. Development status and trend of micro-satellite laser communication systems[J]. Chinese Optics, 2020, 13(6): 1171-1181. (in Chinese). doi: 10.37188/CO.2020-0033 [2] 沈宏海, 黄猛, 李嘉全, 等. 国外先进航空光电载荷的进展与关键技术分析[J]. 中国光学,2012,5(1):20-29.SHEN H H, HUANG M, LI J Q, et al. Recent progress in aerial electro-optic payloads and their key technologies[J]. Chinese Optics, 2012, 5(1): 20-29. (in Chinese). [3] 霍银龙, 杨飞, 王富国. 大口径光学望远镜拼接镜面关键技术综述[J]. 中国光学(中英文),2022,15(5):973-982. doi: 10.37188/CO.2022-0109HUO Y L, YANG F, WANG F G. Overview of key technologies for segmented mirrors of large-aperture optical telescopes[J]. Chinese Optics, 2022, 15(5): 973-982. (in Chinese). doi: 10.37188/CO.2022-0109 [4] 周东华, 胡艳艳. 动态系统的故障诊断技术[J]. 自动化学报,2009,35(6):748-758. doi: 10.3724/SP.J.1004.2009.00748ZHOU D H, HU Y Y. Fault diagnosis techniques for dynamic systems[J]. Acta Automatica Sinica, 2009, 35(6): 748-758. (in Chinese). doi: 10.3724/SP.J.1004.2009.00748 [5] 王红举, 杨文淑, 包启亮, 等. 快速反射镜传感器故障检测[J]. 光电工程,2016,43(3):46-51.WANG H G, YANG W SH, BAO Q L, et al. Sensor fault detection of a fast steering mirror[J]. Opto-Electronic Engineering, 2016, 43(3): 46-51. (in Chinese). [6] 钱华明, 富振铎, 宁秀丽, 等. 基于LMI的H-/H∞故障检测观测器设计[J]. 宇航学报,2012,33(12):1747-1756. doi: 10.3873/j.issn.1000-1328.2012.12.006QIAN H M, FU ZH D, NING X L, et al. Design of H-/H∞ fault detection observer design based on LMI[J]. Journal of Astronautics, 2012, 33(12): 1747-1756. (in Chinese). doi: 10.3873/j.issn.1000-1328.2012.12.006 [7] NEKOO S R, OLLERO A. A robust state-dependent Riccati equation controller with parameter uncertainty and matched disturbance[J]. Journal of the Franklin Institute, 2023, 360(18): 14584-14595. doi: 10.1016/j.jfranklin.2023.11.023 [8] 王小丽, 宋红敏, 倪茂林. 一种基于LMI的鲁棒故障诊断滤波器设计[J]. 控制理论与应用,2009,26(5):550-554.WANG X L, SONG H M, NI M L, et al. The design of a robust fault-detection filter: the LMI approach[J]. Control Theory & Applications, 2009, 26(5): 550-554. (in Chinese). [9] 吴丽娜, 张迎春, 贾庆贤, 等. 基于LMI的H-/H∞故障检测观测器设计[J]. 系统工程与电子技术,2012,34(8):1675-1679.WU L N, ZHANG Y CH, JIA Q X, et al. LMI approach to H-/H∞ fault detection observer design[J]. Systems Engineering and Electronics, 2012, 34(8): 1675-1679. (in Chinese). [10] 时晶晶, 姚佰栋, 鲁加国. 高速倾斜镜建模与传递函数辨识[J]. 红外与金宝搏188软件怎么用 工程,2013,42(10):2748-2752. doi: 10.3969/j.issn.1007-2276.2013.10.029SHI J J, YAO B D, LU J G. Modeling and transfer function identification of FSM system[J]. Infrared and Laser Engineering, 2013, 42(10): 2748-2752. (in Chinese). doi: 10.3969/j.issn.1007-2276.2013.10.029 [11] CHENG P, LIANG Y B. Model in frequency-domain identification of a fast steering mirror system based on levenberg-marquardt algorithm[C]. Proceedings of 2017 2nd International Conference on Cybernetics, Robotics and Control, IEEE, 2017: 177-202. [12] 方连伟, 史守峡, 蒋志勇. 柔性支撑快速反射镜伺服机构的参数辨识[J]. 红外与金宝搏188软件怎么用 工程,2021,50(5):20200303. doi: 10.3788/IRLA20200303FANG L W, SHI SH X, JIANG ZH Y. Servo mechanism parameter identification of fast steering mirror based on flexible supports[J]. Infrared and Laser Engineering, 2021, 50(5): 20200303. (in Chinese). doi: 10.3788/IRLA20200303 [13] 于淼, 刘建昌, 郭戈. 基于随机分布理论的递推子空间辨识[J]. 控制理论与应用,2021,38(9):1333-1340. doi: 10.7641/CTA.2021.00819YU M, LIU J CH, GUO G. Recursive subspace identification based on random distribution theory[J]. Control Theory & Applications, 2021, 38(9): 1333-1340. (in Chinese). doi: 10.7641/CTA.2021.00819 [14] 闻成, 谭敏哲, 卢洁莹, 等. 具有柔性特性的机电伺服系统辨识[J]. 控制理论与应用,2023,40(4):663-672. doi: 10.7641/CTA.2021.10452WEN CH, TAN M ZH, LU J Y, et al. Identification of electromechanical servo systems with flexible characteristics[J]. Control Theory & Applications, 2023, 40(4): 663-672. (in Chinese). doi: 10.7641/CTA.2021.10452 [15] 夏培培, 邓永停, 王志乾, 等. 2m望远镜消旋K镜转台的模型辨识[J]. 红外与金宝搏188软件怎么用 工程,2018,47(3):0318001. doi: 10.3788/IRLA201847.0318001XIA P P, DENG Y T, WANG ZH Q, et al. Model identification for K mirror turntable of 2 m telescope[J]. Infrared and Laser Engineering, 2018, 47(3): 0318001. (in Chinese). doi: 10.3788/IRLA201847.0318001 [16] 张建强, 孙崇尚, 吴佳彬, 等. 金宝搏188软件怎么用 通信快速反射镜系统辨识与平衡截断[J/OL]. 控制理论与应用, (2023-11-15)[2023-11-15]. http://kns.cnki.net/kcms/detail/44.1240.tp.20231114.1414.052.html.ZHANG J Q, SUN CH SH, WU J B, et al. Identification and balancing truncation of laser communication fast steering mirror system[J/OL]. Control Theory and Applications, (2023-11-15)[2023-11-15]. http://kns.cnki.net/kcms/detail/44.1240.tp.20231114.1414.052.html. (in Chinese) [17] 吴斌, 于春梅, 李强. 过程工业故障诊断[M]. 北京: 科学出版社, 2012.WU B, YU CH M, LI Q. Troubleshooting Industrial Processes[M]. Beijing: Science Press, 2012. (in Chinese) [18] ZHANG J F, RAÏSSI T, LI Q, et al. Distributed adaptive event-triggered fault detection filter of positive semi-Markovian jump systems[J]. Nonlinear Analysis: Hybrid Systems, 2024, 51: 101441. doi: 10.1016/j.nahs.2023.101441 [19] 李禹希, 张刘, 陈思桐, 等. 基于自抗扰算法的光电跟踪伺服控制方法研究[J]. 中国光学,2022,15(3):562-567. doi: 10.37188/CO.2022-0090LI Y X, ZHANG L, CHEN S T, et al. Photoelectric tracking servo control method based on active disturbance rejection algorithm[J]. Chinese Optics, 2022, 15(3): 562-567. (in Chinese). doi: 10.37188/CO.2022-0090 [20] 白盼鑫, 张恒, 王哲, 等. 基于动态事件的水面无人船故障检测[J]. 控制工程,2023,30(12):2192-2198.BAI P X, ZHANG H, WANG ZH, et al. Dynamic event-based fault detection for unmanned surface vehicles[J]. Control Engineering of China, 2023, 30(12): 2192-2198. (in Chinese).