-
摘要:
与传统光电位移测量技术相比,基于数字图像处理方法的位移测量技术具有更高的容错性、灵活性,因而成为当前的研究热点之一。为了实现高精度、高可靠性角位移测量,建立了基于曼彻斯特编码的图像式角位移测量系统。首先,以M序列伪随机编码为基础,采用曼彻斯特编码方式设计单码道光栅码盘,并采用数字图像传感器设计了光栅码盘上图案的获取光路。然后,基于所使用的编码图案,提出了译码识别算法。其次,为进一步提升位移测量的分辨力提出了边沿定位算法和编码标线边沿图案拟合的亚像素细分算法。最后,对所提出的方法进行实验验证。实验结果表明:在光栅码盘为100 mm时,实现21-bit的分辨力和1.73"的精度。所做的研究,为高可靠性、高性能光电角位移测量技术的研究奠定基础。
Abstract:In comparison with traditional photoelectric displacement measurement technologies, displacement measurement methods based on digital image processing methods exhibit superior fault tolerance and flexibility, making them a current research hotspot. To achieve high-precision and high-reliability angular displacement measurement, an image-based angular displacement measurement system based on Manchester coding is proposed. First, a single code-channel raster code disc was designed using Manchester coding based on M-sequence pseudo-random coding. A digital image sensor was then used to construct an optical path for capturing patterns on the raster code disc. Subsequently, a decoding recognition algorithm tailored to the coded patterns was developed. Additionally, edge positioning and sub-pixel subdivision algorithms for coded marker edge pattern fitting were proposed to further enhance the system’s resolution. The proposed method was then experimentally validated. The experimental results demonstrated that the system achieved a resolving power of 21 bits and an accuracy of 1.73 arcseconds with a 100 mm grating code disc. This research provides a foundation for the development of highly reliable and high-performance photoelectric angular displacement measurement technologies. Image-based angular displacement measurement system based on Manchester coding
-
Key words:
- Manchester /
- graphical /
- angular displacement measurement /
- edge positioning /
- subpixel
-
表 1 测角误差结果
Table 1. Angle measurement error results
序号 测量角度值 误差(arcsec) 1 00°00′00″ 0 2 21°10′35.29″ −0.8 3 42°21′10.59″ −2.4 4 63°31′45.88″ −3.8 5 84°42′21.67″ −0.8 6 105°52′56.47″ −0.3 7 127°3′31.76″ 3.1 8 148°14′7.06″ 1.1 9 169°24′42.35″ −1.1 10 190°35′17.65″ −1.5 11 211°45′52.94″ −3.3 12 232°56′28.24″ −1.9 13 254°7′.5.53″ −3.6 14 275°17′38.82″ −1.4 15 296°28′14.12″ −1.1 16 317°38′49.41″ 0.1 17 338°49′24.71″ −3.5 -
[1] 韦湘宜, 丁红昌, 曹国华. 光电编码器检测技术的研究现状及发展趋势[J]. 电子科技,2015,28(9):184-188.WEI X Y, DING H CH, CAO G H. Current status and development of detection of photoelectric encoders[J]. Electronic Science and Technology, 2015, 28(9): 184-188. (in Chinese). [2] 汤天瑾, 曹向群, 林斌. 光电轴角编码器发展现状分析及展望[J]. 光学仪器,2005,27(1):90-96. doi: 10.3969/j.issn.1005-5630.2005.01.019TANG T J, CAO X Q, LIN B. Developing current situation and the trend of photoelectric-angular encoder[J]. Optical Instruments, 2005, 27(1): 90-96. (in Chinese). doi: 10.3969/j.issn.1005-5630.2005.01.019 [3] 叶盛祥. 光电位移精密测量技术[M]. 乌鲁木齐: 新疆科技卫生出版社, 2003.YE SH X. Accurate Measurement about Photoelectric Shift[M]. Urumqi: Xinjiang Science and Technology Health Publishing House, 2003. (in Chinese) (查阅网上资料, 未找到本条文献英文翻译信息, 请确认) . [4] 张建辉, 陈震林, 张帆. 绝对式光电编码器的编码理论研究进展[J]. 振动、测试与诊断,2021,41(1):1-12,197.ZHANG J H, CHEN ZH L, ZHANG F. Advances in coding theory of absolute optical encoders[J]. Journal of Vibration, Measurement & Diagnosis, 2021, 41(1): 1-12,197. (in Chinese). [5] YU H. Angle measurement based on in-line digital holographic reconstruction[J]. Optics and Lasers in Engineering, 2021, 137: 106385. doi: 10.1016/j.optlaseng.2020.106385 [6] YU H, WAN Q H, ZHAO CH H. Stain-detection and anti-stain algorithms based on dual detector data interchange in image-type displacement measurement technology[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 5012209. [7] YU H, JIA X D, WAN Q H, et al. High-resolution angular displacement technology based on varying moiré figure phase positions[J]. IEEE Sensors Journal, 2019, 19(6): 2126-2132. doi: 10.1109/JSEN.2018.2886309 [8] 万秋华, 孙莹, 王树洁, 等. 双读数系统的航天级绝对式光电编码器设计[J]. 光学 精密工程,2009,17(1):52-57.WAN Q H, SUN Y, WANG SH J, et al. Design for spaceborne absolute photoelectric encoder of dual numerical system[J]. Optics and Precision Engineering, 2009, 17(1): 52-57. (in Chinese). [9] 高旭. 莫尔条纹光电信号自动补偿技术研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2014.GAO X. Research on automatic compensation technique of Moiré fringe photoelectric signal[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2014. (in Chinese). [10] TRESANCHEZ M, PALLEJÀ T, TEIXIDÓ M, et al. Using the image acquisition capabilities of the optical mouse sensor to build an absolute rotary encoder[J]. Sensors and Actuators A: Physical, 2010, 157(1): 161-167. doi: 10.1016/j.sna.2009.11.002 [11] KIM J A, KIM J W, KANG C S, et al. Absolute angle measurement using a phase-encoded binary graduated disk[J]. Measurement, 2016, 80: 288-293. doi: 10.1016/j.measurement.2015.11.037 [12] BAJIĆ J S, STUPAR D Z, DAKIĆ B M, et al. An absolute rotary position sensor based on cylindrical coordinate color space transformation[J]. Sensors and Actuators A: Physical, 2014, 213: 27-34. doi: 10.1016/j.sna.2014.03.036 [13] BAHN W, NAM J H, LEE S H, et al. Digital optoelectrical pulse method for Vernier-type rotary encoders[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(2): 431-440. doi: 10.1109/TIM.2015.2502878 [14] DZIWINSKI T. A novel approach of an absolute encoder coding pattern[J]. IEEE Sensors Journal, 2015, 15(1): 397-401. doi: 10.1109/JSEN.2014.2345587 [15] 谈颖皓. 基于线阵探测器的绝对轴角编码技术[D]. 杭州: 浙江大学, 2012.TAN Y H. The absolute angular encoder technique using liner detector[D]. Hangzhou: Zhejiang University, 2012. (in Chinese). [16] 谈颖皓, 袁波, 孟子博. 基于线阵探测器的单圈绝对轴角编码器[J]. 光子学报,2011,40(12):1771-1775. doi: 10.3788/gzxb20114012.1771TAN Y H, YUAN B, MENG Z B. A single-track absolute angular encoder using the linear detector[J]. Acta Photonica Sinica, 2011, 40(12): 1771-1775. (in Chinese). doi: 10.3788/gzxb20114012.1771 [17] SU X G, HU X D, ZHANG X D. A single-ring absolute encoder subdivision method[C]. 2015 Seventh International Conference on Measuring Technology and Mechatronics Automation, IEEE, 2015: 55-58. [18] MU Y S, JIANG J Q, DING N, et al. A 7.4 kHz, 20-bit image encoder with a CMOS linear image sensor[J]. Optical and Quantum Electronics, 2019, 51(10): 321. doi: 10.1007/s11082-019-2037-z [19] 任曦, 杜升平, 陈科, 等. 圆光栅编码器测角误差源及频谱分析[J]. 金宝搏188软件怎么用 与光电子学进展,2020,57(17):171205.REN X, DU SH P, CHEN K, et al. Error source and spectrum analysis for angle measurement of circular grating encoder[J]. Laser & Optoelectronics Progress, 2020, 57(17): 171205. (in Chinese). [20] WANG H, OU W CH, WU ZH L, et al. Quantum dot encoder via near-field direct writing[J]. IEEE Sensors Journal, 2022, 22(21): 20293-20302. doi: 10.1109/JSEN.2022.3207595 [21] 张寅, 顾恩臣, 闫钧华, 等. 基于相位拟合的绝对式光电精密测角方法[J]. 仪器仪表学报,2023,44(2):15-23.ZHANG Y, GU E CH, YAN J H, et al. Absolute photoelectric precision angle measurement method based on phase fitting[J]. Chinese Journal of Scientific Instrument, 2023, 44(2): 15-23. (in Chinese). [22] 于海, 万秋华, 孙莹, 等. 一种自适应安装的高精度图像式角位移测量装置[J]. 中国光学,2020,13(3):510-516.YU H, WAN Q H, SUN Y, et al. A high precision image angular displacement measurement device with self-adaptive installation[J]. Chinese Optics, 2020, 13(3): 510-516. (in Chinese). [23] 齐荔荔. 小型高分辨力图像式光电编码器原理研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2013.QI L L. The principle research on small optical pattern rotary encoder with high resolution[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2013. (in Chinese). -