留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Decoherence of temporal quantum correlation in electrically controllable quantum-dots molecules

XIE Jia-ling YAN Kai TAN Jia CAO Zhao-liang HAO Xiang

谢佳凌, 严凯, 谭佳, 曹召良, 郝翔. 电控量子点分子的时域量子关联退相干[J]. , 2023, 16(5): 1206-1214. doi: 10.37188/CO.EN-2022-0025
引用本文: 谢佳凌, 严凯, 谭佳, 曹召良, 郝翔. 电控量子点分子的时域量子关联退相干[J]. , 2023, 16(5): 1206-1214. doi: 10.37188/CO.EN-2022-0025
XIE Jia-ling, YAN Kai, TAN Jia, CAO Zhao-liang, HAO Xiang. Decoherence of temporal quantum correlation in electrically controllable quantum-dots molecules[J]. Chinese Optics, 2023, 16(5): 1206-1214. doi: 10.37188/CO.EN-2022-0025
Citation: XIE Jia-ling, YAN Kai, TAN Jia, CAO Zhao-liang, HAO Xiang. Decoherence of temporal quantum correlation in electrically controllable quantum-dots molecules[J]. Chinese Optics, 2023, 16(5): 1206-1214. doi: 10.37188/CO.EN-2022-0025

电控量子点分子的时域量子关联退相干

详细信息
  • 中图分类号: O431.2

Decoherence of temporal quantum correlation in electrically controllable quantum-dots molecules

doi: 10.37188/CO.EN-2022-0025
Funds: Supported by National Natural Science Foundation of China (No. 61875145);Jiangsu Key Disciplines of the Fourteenth Five-Year Plan (No.2021135); Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX23_3312);
More Information
    Author Bio:

    Xie Jia-ling (1999—), female, born in Nantong, Jiangsu Province, masters student. She received her bachelor's degree from the Yancheng Institute of Technology in 2021. She is mainly engaged in research on quantum optics and quantum information. E-mail: 2392111827@qq.com

    Hao Xiang (1981—), male, born in Huaian, Jiangsu Province, Ph.D., professor and masters supervisor. He received his Ph.D. from the Institute of Modern Optics, Soochow University in 2008. He is mainly engaged in research of quantum optics and quantum information. E-mail: xhao@mail.usts.edu.cn

    Corresponding author: xhao@mail.usts.edu.cn
  • 摘要:

    本文以与光腔耦合的电控量子点分子为研究对象,分析了量子点的时域量子关联退相干特性。基于可测量的Leggett-Garg不等式,研究光电混合系统的时域量子关联。测量不等式的违背性可以作为动态演化过程中时域量子关联的存在证据。调控电子隧穿强度和光腔频率失谐有利于增强时域量子关联。发现,在空间量子关联值为零的区域内,不存在时域量子关联。当空间量子关联值较高时,量子点动力学演化存在Leggett-Garg不等式测量的最大程度违背现象。与之相反,在时域量子关联为零的时间段内,空间量子关联仍然存在。本文采用开放量子系统动力学方法研究环境效应对时域量子关联的影响。量子点的自发衰变和光腔泄漏抑制了时域量子关联。这些结果可用于混合量子系统的量子信息处理技术。

     

  • Figure 1.  (a) A quantum dots molecule is coupled to a cavity. The symbol V denotes an electrical voltage which is used to control the electron tunnel. (b) Schematic diagram of band structure and level configuration of a quantum dots molecule. The system of the quantum dots molecule consists of two dots with lateral couplings. The electron and hole are represented by the red circle and black circle, respectively

    Figure 2.  The dynamics of the ${\text{LGI}}$ violation are plotted as a function of the tunnel strength ${T_e}$ when $g = 1$, $\Delta = 0$ and ${\omega _{21}} = 0$. The nonzero values of ${\text{VLGI}}$ demonstrate the presence of temporal quantum correlation

    Figure 3.  The maximal ${\text{LGI}}$ violation varies with cavity frequency detuning. The parameters $g = 1$, ${T_e} = 0.5g$ and ${\omega _{21}} = 0$ are chosen

    Figure 4.  The evolution of the spatial and temporal correlation is shown when the parameters $g = 1$, ${T_e} = 0.5g$, $\Delta = 0$ and ${\omega _{21}} = 0$ are chosen. The red dashed line denotes the spatial quantum correlation evaluated by ${l_1}$-norm quantum coherence. The black solid line describes the behavior of temporal correlation given by the ${\text{LGI}}$ violation

    Figure 5.  The effects of environmental noise on the temporal correlation are considered when the parameters are $g = 1$, ${T_e} = 0.6g$, $\Delta = 0$ and ${\omega _{21}} = 0$. (a) The decreased oscillation of the ${\text{LGI}}$ violation is plotted when the spontaneous decay $\gamma = 0.02g$ and the cavity leakage $\kappa = 0.01g$; (b) The maximal ${\text{LGI}}$ violations are plotted as a function of the tunneling coupling for the different decaying parameters of $\gamma = 0.02g,\;0.01g$ which are represented by the red circles and black squares, respectively

    Baidu
  • [1] HORODECKI R, HORODECKI P, HORODECKI M, et al. Quantum entanglement[J]. Reviews of Modern Physics, 2009, 81(2): 865-942. doi: 10.1103/RevModPhys.81.865
    [2] NIELSEN M A, CHUANG I L. Quantum Computation and Quantum Information[M]. Cambridge: Cambridge University Press, 2010.
    [3] ALICKI R, FANNES M. Entanglement boost for extractable work from ensembles of quantum batteries[J]. Physical Review E, 2013, 87(4): 042123. doi: 10.1103/PhysRevE.87.042123
    [4] PRESKILL J. Quantum computing in the NISQ era and beyond. quantum: the open journal for quantum science[J]. Quantum, 2018, 2: 79. doi: 10.22331/q-2018-08-06-79
    [5] PEREIRA E. Perfect thermal rectification in a many-body quantum Ising model[J]. Physical Review E, 2019, 99(3): 032116.
    [6] MODI K, BRODUTCH A, CABLE H, et al. The classical-quantum boundary for correlations: discord and related measures[J]. Reviews of Modern Physics, 2012, 84: 1655-1707. doi: 10.1103/RevModPhys.84.1655
    [7] BRUNNER N, CAVALCANTI D, PIRONIO S, et al. Bell nonlocality[J]. Reviews of Modern Physics, 2014, 86(2): 419-478. doi: 10.1103/RevModPhys.86.419
    [8] CLEMENTE L, KOFLER J. No fine theorem for macrorealism: limitations of the Leggett-Garg inequality[J]. Physical Review Letters, 2016, 116(15): 150401. doi: 10.1103/PhysRevLett.116.150401
    [9] BELL J S. On the Einstein Podolsky Rosen paradox[J]. Physics Physique Fizika, 1964, 1(3): 195-200. doi: 10.1103/PhysicsPhysiqueFizika.1.195
    [10] CLAUSER J F, SHIMONY A. Bell's theorem. Experimental tests and implications[J]. Reports on Progress in Physics, 1978, 41(12): 1881-1927. doi: 10.1088/0034-4885/41/12/002
    [11] HILL S A, WOOTTERS W K. Entanglement of a pair of quantum bits[J]. Physical Review Letters, 1997, 78(26): 5022-5025. doi: 10.1103/PhysRevLett.78.5022
    [12] WOOTTERS W K. Entanglement of formation of an arbitrary state of two qubits[J]. Physical Review Letters, 1998, 80(10): 2245-2248. doi: 10.1103/PhysRevLett.80.2245
    [13] OLLIVIER H, ZUREK W H. Quantum discord: a measure of the quantumness of correlations[J]. Physical Review Letters, 2001, 88(1): 017901. doi: 10.1103/PhysRevLett.88.017901
    [14] HENDERSON L, VEDRAL V. Classical, quantum and total correlations[J]. Journal of Physics A:Mathematical and General, 2001, 34(35): 6899-6905. doi: 10.1088/0305-4470/34/35/315
    [15] BAUMGRATZ T, CRAMER M, PLENIO M B. Quantifying coherence[J]. Physical Review Letters, 2014, 113(14): 140401. doi: 10.1103/PhysRevLett.113.140401
    [16] SINGH U, BERA M N, DHAR H S, et al. Maximally coherent mixed states: complementarity between maximal coherence and mixedness[J]. Physical Review A, 2015, 91(5): 052115. doi: 10.1103/PhysRevA.91.052115
    [17] ZHAO M J, MA T, QUAN Q, et al. ${l_1}$-norm coherence of assistance[J]. Physical Review A, 2019, 100(1): 012315. doi: 10.1103/PhysRevA.100.012315
    [18] BEYER K, UOLA R, LUOMA K, et al. Joint measurability in nonequilibrium quantum thermodynamics[J]. Physical Review E, 2022, 106(2): L022101. doi: 10.1103/PhysRevE.106.L022101
    [19] LUO SH L. Quantum discord for two-qubit systems[J]. Physical Review A, 2008, 77(4): 042303. doi: 10.1103/PhysRevA.77.042303
    [20] LEGGETT A J, GARG A. Quantum mechanics versus macroscopic realism: is the flux there when nobody looks?[J]. Physical Review Letters, 1985, 54(9): 857-860. doi: 10.1103/PhysRevLett.54.857
    [21] EMARY C, LAMBERT N, NORI F. Leggett–Garg inequalities[J]. Reports on Progress in Physics, 2014, 77(1): 016001. doi: 10.1088/0034-4885/77/1/016001
    [22] HUELGA S F, MARSHALL T W, SANTOS E. Proposed test for realist theories using Rydberg atoms coupled to a high-Q resonator[J]. Physical Review A, 1995, 52(4): R2497-R2500. doi: 10.1103/PhysRevA.52.R2497
    [23] GOGGIN M E, ALMEIDA M P, BARBIERI M, et al. Violation of the Leggett–Garg inequality with weak measurements of photons[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(4): 1256-1261. doi: 10.1073/pnas.1005774108
    [24] GROEN J P, RISTÈ D, TORNBERG L, et al. Partial-measurement backaction and nonclassical weak values in a superconducting circuit[J]. Physical Review Letters, 2013, 111(9): 090506. doi: 10.1103/PhysRevLett.111.090506
    [25] SANTINI A, VITALE V. Experimental violations of Leggett-Garg inequalities on a quantum computer[J]. Physical Review A, 2022, 105(3): 032610. doi: 10.1103/PhysRevA.105.032610
    [26] BUDRONI C, EMARY C. Temporal quantum correlations and Leggett-Garg inequalities in multilevel systems[J]. Physical Review Letters, 2014, 113(5): 050401. doi: 10.1103/PhysRevLett.113.050401
    [27] KATIYAR H, BRODUTCH A, LU D W, et al. Experimental violation of the Leggett–Garg inequality in a three-level system[J]. New Journal of Physics, 2017, 19: 023033. doi: 10.1088/1367-2630/aa5c51
    [28] WANG K K, EMARY C, ZHAN X, et al. Enhanced violations of Leggett-Garg inequalities in an experimental three-level system[J]. Optics Express, 2017, 25(25): 31462-31470. doi: 10.1364/OE.25.031462
    [29] VILLAS-BÔAS J M, GOVOROV A O, ULLOA S E. Coherent control of tunneling in a quantum dot molecule[J]. Physical Review B, 2004, 69(12): 125342. doi: 10.1103/PhysRevB.69.125342
    [30] MÜLLER K, BECHTOLD A, RUPPERT C, et al. Electrical control of interdot electron tunneling in a double InGaAs quantum-dot nanostructure[J]. Physical Review Letters, 2012, 108(19): 197402. doi: 10.1103/PhysRevLett.108.197402
    [31] BEIRNE G J, HERMANNSTÄDTER C, WANG L, et al. Quantum light emission of two lateral tunnel-coupled (In, Ga)As/GaAs quantum dots controlled by a tunable static electric field[J]. Physical Review Letters, 2006, 96(13): 137401. doi: 10.1103/PhysRevLett.96.137401
    [32] BEIRNE G J, HERMANNSTÄDTER C, WANG L J, et al. Tunable lateral tunnel coupling between two self-assembled InGaAs quantum dots[J]. Proceedings of SPIE, 2007, 6471: 647104. doi: 10.1117/12.697165
    [33] MAHDAVI M, SABEGH Z A, MOHAMMADI M, et al. Manipulation and exchange of light with orbital angular momentum in quantum-dot molecules[J]. Physical Review A, 2020, 101(6): 063811. doi: 10.1103/PhysRevA.101.063811
    [34] LÜ X Y, WU J, ZHENG L L, et al. Voltage-controlled entanglement and quantum-information transfer between spatially separated quantum-dot molecules[J]. Physical Review A, 2011, 83(4): 042302. doi: 10.1103/PhysRevA.83.042302
    [35] ZHENG A SH, CHENG Y J, LIU J B. Voltage-controlled multipartite entanglement with distant quantum dot molecules via adiabatic-varying tunnel coupling[J]. Journal of the Optical Society of America B, 2013, 30(12): 3168-3173. doi: 10.1364/JOSAB.30.003168
    [36] HUA M, TAO M J, ALSAEDI A, et al. Universal distributed quantum computing on superconducting qutrits with dark photons[J]. Annalen der Physik, 2018, 530(4): 1700402. doi: 10.1002/andp.201700402
    [37] SCHALL J, DECONINCK M, BART N, et al. Bright electrically controllable quantum-dot-molecule devices fabricated by in situ electron-beam lithography[J]. Advanced Quantum Technologies, 2021, 4(6): 2100002. doi: 10.1002/qute.202100002
  • 加载中
图(5)
计量
  • 文章访问数:  260
  • HTML全文浏览量:  201
  • PDF下载量:  231
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-18
  • 修回日期:  2022-12-08
  • 网络出版日期:  2023-02-04

目录

    /

    返回文章
    返回
    Baidu
    map