留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of all-optical logic gate based on two-dimensional photonic crystal

WU Rong ZHANG Hao-chen YANG Jian-ye

吴蓉, 张皓辰, 杨建业. 基于二维光子晶体全光逻辑门的设计[J]. , 2024, 17(1): 245-251. doi: 10.37188/CO.EN-2023-0014
引用本文: 吴蓉, 张皓辰, 杨建业. 基于二维光子晶体全光逻辑门的设计[J]. , 2024, 17(1): 245-251. doi: 10.37188/CO.EN-2023-0014
WU Rong, ZHANG Hao-chen, YANG Jian-ye. Design of all-optical logic gate based on two-dimensional photonic crystal[J]. Chinese Optics, 2024, 17(1): 245-251. doi: 10.37188/CO.EN-2023-0014
Citation: WU Rong, ZHANG Hao-chen, YANG Jian-ye. Design of all-optical logic gate based on two-dimensional photonic crystal[J]. Chinese Optics, 2024, 17(1): 245-251. doi: 10.37188/CO.EN-2023-0014

基于二维光子晶体全光逻辑门的设计

详细信息
  • 中图分类号: TN256

Design of all-optical logic gate based on two-dimensional photonic crystal

doi: 10.37188/CO.EN-2023-0014
Funds: Supported by Natural Science Foundation of Gansu Province (No. 21JR7RA289)
More Information
    Author Bio:

    WU Rong (1968—), female, born in Wuwei city, Gansu province, Professor, School of Electronic and Information Engineering, Lanzhou Jiaotong University. Her research interests are on semiconductor integrated circuit. E-mail: 759165367@qq.com

    ZHANG Hao-chen (1997—), male, born in Tongwei country, Gansu province, postgraduate, School of Electronic and Information Engineering, Lanzhou Jiaotong University. His research area centers primary on optical devices. E-mail: 2651809834@qq.com

    Corresponding author: 2651809834@qq.com
  • 摘要:

    在二维光子晶体中嵌入了线缺陷,利用线性干涉效应和波导耦合,设计了一种基于二维光子晶体的同或门和与非门结构。主要采用平面波展开法对该二维光子晶体的能带结构进行分析,采用时域有限差分法,结合线性干涉效应,在Rsoft平台对所设计的同或门和与非门进行稳定电场图和归一化功率仿真。仿真结果标明:设计的同或门对比度高达29.5 dB,响应时间为0.073 ps,数据传输速率为13.7 Tbit/s;设计的与非门对比度高达24.15 dB,响应时间为0.08 ps,数据传输速率为12.5 Tbit/s。这些结果表明所设计的结构对比度高、响应时间短和数据传输速率快。

     

  • Figure 1.  Energy band diagram of TE mode of photonic crystal

    Figure 2.  XOR gate structure

    Figure 3.  The steady-state electric field diagrams when the input is logic (a) '00', (b) '01', (c) '10' and (d) '11' respectively

    Figure 4.  The normalized power output curves when the input is logic (a) '00', (b) '01', (c) '10' and (d) '11' respectively

    Figure 5.  NAND gate structure

    Figure 6.  The stable electric field diagram and normalized power curve when the input logic is '00', '10' and '11', respectively. (a)-(c) are electric field diagrams when input logic is (a) '00', (b) '10', and (c) '11'; (d)-(f) are normalized curves when input logic is (d) '00', (e) '10', and (f) '00'

    Table  1.   Summarized features of proposed structure and previous works

    Works/yearsContrast ratio (dB)
    NANDNOR
    Ref. [17]/202019.44.6
    Ref. [18]/20225.75.9
    Ref. [19]/20235.97.7
    This work24.1529.5
    下载: 导出CSV
    Baidu
  • [1] CHEN H M, WEI X Y. The design of high-speed photonic crystal optical switch[J]. Opto-Electronic Engineering, 2013, 40(11): 34-39. (in Chinese).
    [2] KONG X D. Development status of electronic technology application system[J]. Electronic Technology & Software Engineering, 2017, (1): 115. (in Chinese)
    [3] GUO Y, ZHU J F, ZHANG H, et al. Research on all-optical switch based on nonlinear effect of photonic crystal[J]. Imaging Science and Photochemistry, 2020, 38(1): 15-21. (in Chinese). doi: 10.7517/issn.1674-0475.190713
    [4] SHAIK E H, RANGASWAMY N. Multi-mode interference-based photonic crystal logic gates with simple structure and improved contrast ratio[J]. Photonic Network Communications, 2017, 34(1): 140-148. doi: 10.1007/s11107-016-0683-7
    [5] GUPTA P, PALTANI P P, TRIPATHI S. Photonic crystal based all-optical switch using a ring resonator and Kerr effect[J]. Fiber and Integrated Optics, 2022, 41(5-6): 143-153. doi: 10.1080/01468030.2022.2163725
    [6] LIANG L X, ZHANG X J, WU X S, et al. Terahertz filter and optical switch based on magnetic-photonic crystals[J]. Acta Optica Sinica, 2018, 38(5): 0513002. (in Chinese). doi: 10.3788/AOS201838.0513002
    [7] FU P D, CHEN H M. Design and performance analysis of three-mode division multi/demultiplexer based on two-dimensional photonic crystals[J]. Laser & Optoelectronics Progress, 2017, 54(2): 020602. (in Chinese).
    [8] THARA R L, PRIYA P A, NAYAK C. Si-SiO2 clustery random photonic crystal based thermo-optic sensor[J]. Silicon, 2022, 14(18): 12919-12929. doi: 10.1007/s12633-022-01984-1
    [9] AOBAID R A, HUSSAIN H S. Magneto-optical sensor based on the bandgap effect of a hollow-core photonic crystal fiber injected with Fe3O4[J]. IOP Conference Series:Materials Science and Engineering, 2020, 871(1): 012068. doi: 10.1088/1757-899X/871/1/012068
    [10] LIU ZH, WU R, YAN Q B, et al. Design and simulation of two-dimensional photonic crystal all-optical logic gates[J]. Laser & Optoelectronics Progress, 2019, 56(18): 182301. (in Chinese).
    [11] WU R, ZHAO CH Q, HE ZH X. Design and optimization of all-optical NOR and NOT logic gates[J]. Semiconductor Optoelectronics, 2017, 38(1): 45-48. (in Chinese).
    [12] 孙晓雯. 基于二维光子晶体自准直效应的全光逻辑门研究[D]. 济南: 山东大学, 2018.

    SUN X W. Research on all-optical logic gate based on the self collimation effect of 2D photonic crystal[D]. Ji’nan: Shandong University, 2018. (in Chinese).
    [13] 刘振. 基于二维光子晶体逻辑门的全光加法器研究[D]. 兰州: 兰州交通大学, 2020.

    LIU ZH. Research on all-optical adder based on two-dimensional photonic crystal logic gates[D]. Lanzhou: Lanzhou Jiaotong University, 2020. (in Chinese).
    [14] CHHIPA M K, MADHAV B T P, SUTHAR B, et al. Ultra-compact with improved data rate optical encoder based on 2D linear photonic crystal ring resonator[J]. Photonic Network Communications, 2022, 44(1): 30-40. doi: 10.1007/s11107-022-00975-x
    [15] CAI CH, JIANG Z D, LI P L. Fast all-optical 4×2 encoder with high contrast based on two-dimensional photonic crystal[J]. Laser & Optoelectronics Progress, 2022, 59(1): 0114004. (in Chinese).
    [16] ZHANG Y, LI M F, CHEN D Y. Design and optimization of half-adder based on two-dimensional photonic crystal[J]. Laser & Optoelectronics Progress, 2022, 59(1): 0123001. (in Chinese).
    [17] BOUAOUINA M S, LEBBAL M R, BOUCHEMAT T, et al. High contrast ratio for full-designs optical logic gates based on photonic crystal ring resonator[J]. Frequenz, 2020, 74(9-10): 277-285. doi: 10.1515/freq-2020-0011
    [18] CABALLERO L P, POVINELLI M L, RAMIREZ J C, et al. Photonic crystal integrated logic gates and circuits[J]. Optics Express, 2022, 30(2): 1976-1993. doi: 10.1364/OE.444714
    [19] VADIVU N S, TRABELSI Y, JAYASINGH J R, et al. A novel design of all logic gates in honeycomb photonic crystal and independent of polarization modes (TE/TM) for optical integrated circuit applications[J]. Optics and Lasers in Engineering, 2023, 161: 107345. doi: 10.1016/j.optlaseng.2022.107345
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  248
  • HTML全文浏览量:  171
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-28
  • 修回日期:  2023-08-07
  • 网络出版日期:  2023-09-22

目录

    /

    返回文章
    返回
    Baidu
    map