All-optical logic gate based on nonlinear effects of two-dimensional photonic crystals
doi: 10.37188/CO.EN-2023-0021
-
摘要:
基于光子晶体非线性效应和线性干涉效应设计了全光异或、非和与逻辑门。应用反演定理拆分较复杂逻辑表达式,通过级联组合设计了全光或非门和四输入与门逻辑器件。本文利用时域有限差分法进行仿真模拟计算,对非线性环形腔的耦合特性进行了分析,然后在信号波长为1.47 μm条件下设计了上述逻辑器件,且通过可扩展输入端可设计出更多输入的器件。分析了信号功率对四输入与逻辑器件逻辑功能的影响。结果表明信号光源功率在1.1 W/μm2到3.4 W/μm2之间时,输出端的逻辑对比度均大于10 dB。所设计器件响应时间最短仅1.6 ps,占用面积小,易于扩展与集成,在光处理系统和集成光路中有较大应用前景。
Abstract:All-optical XOR, NOT and two-input AND logic gates are designed based on the nonlinear effect and linear interference effect of photonic crystals. The complex logic expressions are divided by inversion theorem, and all-optical NOR gate and four-input AND gate logic devices are designed by cascade combination. In this paper, the Finite-Difference Time-Domain (FDTD) method is used for simulation, and the coupling characteristics of nonlinear annular cavities are analyzed. Then, the above logic devices are designed under the condition that the signal wavelength is 1.47 μm, and more input devices can be designed by expanding the input. The influence of signal power on the logic function of the four-input AND logic devices is analyzed. The results show that when the power of the signal light source is between 1.1 W/μm2 and 3.4 W/μm2, the logical contrast ratio of the output is greater than 10 dB. The response time of the designed device is only 1.6 ps, the occupied area is small, and the device is easy to expand and integrate. It has great application prospect in optical processing systems and integrated optical paths.
-
Key words:
- ring resonator /
- microcavity /
- optical logics /
- nonlinear effect
-
Figure 4. Steady-state electric field diagrams and normalized power curves when input logic is '01', '10' and '11' respectively. (a)−(c) are electric field diagrams when input logic is (a) '01', (b) '10', and (c) '11'; (d)−(f) are normalized power curves when input logic is (d) '01', (e) '10', and (f) '11'
Figure 10. Steady-state electric field diagrams and normalized output powers when input is ‘1000’, ‘1100’, ‘1110’ and ‘1111’. (a)−(d) are electric field diagrams when input is (a) '1000', (b) '1100' , (c) '1110', and (d) '1111' . (e)−(f) are normalized output powers when input is (e) '1000', (f) '1100', (g) '1110', and (h) '1111'
Table 1. Truth table of two-input AND gate
Input (Normalized power) Output (Normalized power) I1 I2 O1 0 1 0.0168 1 1 1.0440 Table 2. Truth table of NOR Gate
Input (Normalized power) Output (Normalized power) I1 I2 O1 0 0 0.4830 1 0 0.0015 1 1 0.0011 Table 3. Truth table of four-input AND gate
Input (Normalized power) Output (Normalized power) I1 I2 I3 I4 O1 1 0 0 0 0.002 1 1 0 0 0.015 1 1 1 0 0.039 1 1 1 1 1.221 Table 4. Summarized features of proposed structure and previous works
-
[1] MEKIS A, MEIER M, DODABALAPUR A, et al. Lasing mechanism in two-dimensional photonic crystal lasers[J]. Applied Physics A, 1999, 99(1): 111-114. [2] YOSHIKUNI Y. Semiconductor optical devices[J]. IEEJ Transactions on Electronics Information and Systems, 2008, 113(4): 231-237. [3] CHANDERKANTA, CHEN N K, KAUSHIK B K, et al. Implementation of reversible Peres gate using electro-optic effect inside lithium-niobate based Mach-Zehnder interferometers[J]. Optics & Laser Technology, 2019, 117: 28-37. [4] LIU Q, LI N, TAN CH H. All-optical logic gate based on manipulation of surface polaritons solitons via external gradient magnetic fields[J]. Physical Review A, 2020, 101(2): 023818. doi: 10.1103/PhysRevA.101.023818 [5] HUANG Y J, XIAO T X, CHEN SH, et al. All-optical controlled-NOT logic gate achieving directional asymmetric transmission based on metasurface doublet[J]. Opto-Electronic Advances, 2023, 6(7): 220073. doi: 10.29026/oea.2023.220073 [6] ICHIOKA Y, TANIDA J. Optical parallel logic gates using a shadow-casting system for optical digital computing[J]. Proceedings of the IEEE, 1984, 72(7): 787-801. doi: 10.1109/PROC.1984.12939 [7] YATAGAI T. Optical space-variant logic-gate array based on spatial encoding technique[J]. Optics Letters, 1986, 11(4): 260-262. doi: 10.1364/OL.11.000260 [8] KOTB A, GUO CH L. 120 Gb/s all-optical NAND logic gate using reflective semiconductor optical amplifiers[J]. Journal of Modern Optics, 2020, 67(12): 1138-1144. doi: 10.1080/09500340.2020.1813342 [9] KOTB A. Simulation of high quality factor all-optical logic gates based on quantum-dot semiconductor optical amplifier at 1 Tb/s[J]. Optik, 2016, 127(1): 320-325. doi: 10.1016/j.ijleo.2015.10.093 [10] WANG J, SUN Q ZH, SUN J Q. All-optical 40 Gbit/s CSRZ-DPSK logic XOR gate and format conversion using four-wave mixing[J]. Optics Express, 2009, 17(15): 12555-12563. doi: 10.1364/OE.17.012555 [11] LIU H Q, QUAN ZH Q, CHENG Y, et al. Ultra-compact universal linear-optical logic gate based on single rectangle plasmonic slot nanoantenna[J]. Plasmonics, 2021, 16(3): 973-980. doi: 10.1007/s11468-020-01363-9 [12] SUI J Y, ZHANG D, ZHANG H F. Logical OR operation and magnetic field sensing based on layered topology[J]. Journal of Physics D:Applied Physics, 2022, 55(41): 415001. doi: 10.1088/1361-6463/ac84e9 [13] SUI J Y, DONG R Y, LIAO S Y, et al. Janus metastructure based on magnetized plasma material with and logic gate and multiple physical quantity detection[J]. Annalen der Physik, 2023, 535(3): 2200509. doi: 10.1002/andp.202200509 [14] TANNAZ S, MORADKHANI M, TAHERZADE M, et al. Ultracompact, high-extinction ratio XOR, OR, and Feynman logic gates based on plasmonic metal–insulator–metal directional couplers[J]. Applied Optics, 2023, 62(3): 644-653. doi: 10.1364/AO.478011 [15] HUANG Y H, SHI M H, YU A D, et al. Design of multifunctional all-optical logic gates based on photonic crystal waveguides[J]. Applied Optics, 2023, 62(3): 774-781. doi: 10.1364/AO.473410 [16] JIAO SH M, LIU J W, LIWEN ZHANG L W, et al. All-optical logic gate computing for high-speed parallel information processing[J]. Opto-Electronic Science, 2022, 1(9): 220010. doi: 10.29026/oes.2022.220010 [17] HOU H Q, YANG Y B, WU M, et al. Solar-blind ultraviolet band-pass filter based on coupling of photonic crystal defects[J]. Acta Optica Sinica, 2023, 43(9): 0923003. (in Chinese). doi: 10.3788/AOS221815 [18] HU Y C, CHEN H M. Optical add-drop multiplexer for dense wavelength division multiplexing system based on photonic crystals[J]. Acta Optica Sinica, 2023, 43(2): 0223002. (in Chinese). doi: 10.3788/AOS220857 [19] WU R, LIU Z, YAN Q B, et al. Eight-channel photonic-crystal wavelength-division multiplexer[J]. Laser & Optoelectronics Progress, 2019, 56(9): 091302. (in Chinese). [20] YANG Y H, YANG F L, LU L, et al. Research on interferometer photonic crystal fiber optic gyroscope technology[J]. Acta Optica Sinica, 2018, 38(3): 0328004. (in Chinese). doi: 10.3788/AOS201838.0328004 [21] WANG J L, LIU Y, CHEN H M. Design on terahertz polarization beam splitter based on self-collimating effect of photonic crystal[J]. Acta Optica Sinica, 2018, 38(4): 0423001. (in Chinese). doi: 10.3788/AOS201838.0423001 [22] CHHIPA M K, MADHAV B T P, SUTHAR B, et al. Ultra-compact with improved data rate optical encoder based on 2D linear photonic crystal ring resonator[J]. Photonic Network Communications, 2022, 44(1): 30-40. doi: 10.1007/s11107-022-00975-x [23] CHHIPA M K, MADHAV B T P, ROBINSON S, et al. Realization of all-optical logic gates using a single design of 2D photonic band gap structure by square ring resonator[J]. Optical Engineering, 2021, 60(7): 075104. [24] PARANDIN F, HEIDARI F, RAHIMI Z, et al. Two-dimensional photonic crystal biosensors: a review[J]. Optics & Laser Technology, 2021, 144: 107397. [25] GHARSALLAH Z, NAJJAR M, SUTHAR B, et al. High sensitivity and ultra-compact optical biosensor for detection of UREA concentration[J]. Optical and Quantum Electronics, 2018, 50(6): 249. doi: 10.1007/s11082-018-1520-2 [26] ALAEI S, SEIFOURI M, BABAABBASI G, et al. Numerical investigation on self-heating effect in 1.3 µm quantum dot photonic crystal microstructure VCSELs[J]. The European Physical Journal Plus, 2022, 137(4): 515. doi: 10.1140/epjp/s13360-022-02731-6 [27] JIANG Y CH, LIU SH B, ZHANG H F, et al. Realization of all optical half-adder based on self-collimated beams by two-dimensional photonic crystals[J]. Optics Communications, 2015, 348: 90-94. doi: 10.1016/j.optcom.2015.03.011 [28] ZHOU X P, SHU J. Novel 1×3 splitter based on photonic crystal self-collimation effect[J]. Acta Optica Sinica, 2013, 33(4): 0423002. (in Chinese). doi: 10.3788/AOS201333.0423002 [29] BOUAOUINA M S, LEBBAL M R, BOUCHEMAT T, et al. High contrast ratio for full-designs optical logic gates based on photonic crystal ring resonator[J]. Frequenz, 2020, 74(9-10): 277-285. doi: 10.1515/freq-2020-0011 [30] CABALLERO L P, POVINELLI M L, RAMIREZ J C, et al. Photonic crystal integrated logic gates and circuits[J]. Optics Express, 2022, 30(2): 1976-1993. doi: 10.1364/OE.444714 [31] VADIVU N S, TRABELSI Y, JAYASINGH J R, et al. A novel design of all logic gates in honeycomb photonic crystal and independent of polarization modes (TE/TM) for optical integrated circuit applications[J]. Optics and Lasers in Engineering, 2023, 161: 107345. doi: 10.1016/j.optlaseng.2022.107345 [32] SALIMZADEH S, ALIPOUR-BANAEI H. A novel proposal for all optical 3 to 8 decoder based on nonlinear ring resonators[J]. Journal of Modern Optics, 2018, 65(17): 2017-2024. doi: 10.1080/09500340.2018.1489077 [33] DAGHOOGHI T, SOROOSH M, ANSARI-ASL K. A low-power all optical decoder based on photonic crystal nonlinear ring resonators[J]. Optik, 2018, 174: 400-408. doi: 10.1016/j.ijleo.2018.08.090 [34] GANESHA K V S, PATIL P S, MAIDUR S R, et al. Sprayed nanocrystalline ZMS thin films for nonlinear optical device applications[J]. Optical Materials, 2019, 96: 109304. doi: 10.1016/j.optmat.2019.109304 [35] MORADI R. All optical half subtractor using photonic crystal based nonlinear ring resonators[J]. Optical and Quantum Electronics, 2019, 51(4): 119. doi: 10.1007/s11082-019-1831-y [36] PASHAMEHR A, ZAVVARI M, ALIPOUR-BANAEI H. All-optical AND/OR/NOT logic gates based on photonic crystal ring resonators[J]. Frontiers of Optoelectronics, 2016, 9(4): 578-584. doi: 10.1007/s12200-016-0513-7