留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Co-phasing method for sparse aperture optical systems based on multichannel fringe tracking

AN Qi-chang WANG Kun LIU Xin-yue LI Hongwen ZHU Jiakang

安其昌, 王鹍, 刘欣悦, 李洪文, 朱嘉康. 基于多路条纹跟踪的稀疏孔径光学系统共相方法[J]. 188bet网站真的吗 . doi: 10.37188/CO.EN-2024-0002
引用本文: 安其昌, 王鹍, 刘欣悦, 李洪文, 朱嘉康. 基于多路条纹跟踪的稀疏孔径光学系统共相方法[J]. 188bet网站真的吗 . doi: 10.37188/CO.EN-2024-0002
AN Qi-chang, WANG Kun, LIU Xin-yue, LI Hongwen, ZHU Jiakang. Co-phasing method for sparse aperture optical systems based on multichannel fringe tracking[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0002
Citation: AN Qi-chang, WANG Kun, LIU Xin-yue, LI Hongwen, ZHU Jiakang. Co-phasing method for sparse aperture optical systems based on multichannel fringe tracking[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0002

基于多路条纹跟踪的稀疏孔径光学系统共相方法

Co-phasing method for sparse aperture optical systems based on multichannel fringe tracking

doi: 10.37188/CO.EN-2024-0002
Funds: This work was supported by the National Natural Science Foundation of China (No. 12373090, No.12133009 ), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2020221)
More Information
  • 摘要:

    为了实现大口径稀疏孔径望远镜的有效共相调整,采用了多通道条纹跟踪方法,允许同时进行多个光路的干涉测量,避免了传统干涉方法中沿镜面边界进行成对测量的需要,从而实现了检测效率的提高与系统复杂性的降低。在这里,我们使用光学波前理论分析了多光束干涉过程的原理和基于光纤直接连接的共相检测模块构造,并对通过多路径干涉获得的系统面型进行了误差分析,探索了干涉方法的潜在应用。最后,通过实验揭示了多路径干涉过程的原理,得到了平场校准和非相干数字合成能够将条纹对比度提高到超过0.4,并且动态范围超过工作中心波长(1550 nm)的10倍,实现了比工作中心波长(1550 nm)好的分辨率。三光束干涉的同时实现提高了50%的检测效率,从而有效提高稀疏孔径望远镜的共相效率,满足了8-10米望远镜的观测要求,为观察遥远和暗淡的天体提供了技术基础。

     

  • Figure 1.  Fundamental principles of fringe sampling. (a) System light-intensity sampling position and (b) sparse-aperture boundary multi-point sampling position.

    Figure 2.  Multilevel co-phasing of a large-aperture sparse optical system. (a) Architecture of optical collection and (b) perception and control of the local step difference based on multiwavelengths.

    Figure 3.  Verification of the accuracy of the sparse aperture wavefront reconstruction. (a)–(c) Large aberration, (d)–(f) medium aberration, and (g)–(i) small aberration.

    Figure 4.  Multilevel fringe tracking validation. (a) Linear array photon collection end, (b) integrated interference modules, (c) multilevel interference fringes, and (d) experimental set up diagram, (e) experimental optical layout picture

    Figure 5.  Three-beam interference principle and its fringes in different wavelength ranges.

    Figure 6.  Validation of the dual-wavelength fringe tracking. (a), (b) Interference fringes formed by the narrowband light at 1530 nm and their average cross-section, (c), (d) interference fringes formed by the narrowband light at 1560 nm and their average cross-section, (e), (f) incoherent synthesis of the dual wavelength and average cross-section.

    Figure 7.  Segmented mirror multipath interference fringe tracking experiment. (a) experimental system, (b) Three-path interference pattern, before correction, (c) Three-path interference pattern after correction.

    Baidu
  • [1] SITARSKI B N, RAKICH A, CHIQUITO H, et al. The GMT telescope metrology system design[J]. Proceedings of the SPIE, 2022, 12182: 1218207. doi: 10.1117/12.2630598
    [2] MCLEOD B A, BOUCHEZ A H, CATROPA D, et al. The wide field phasing testbed for the giant Magellan telescope[J]. Proceedings of the SPIE, 2022, 12182: 1218208. doi: 10.1117/12.2630588
    [3] UMBRIACO G, VASSALLO D, FARINATO J, et al. Deformable lens for testing the performance of focal plane wavefront sensing using phase diversity[J]. Proceedings of the SPIE, 2022, 12185: 121856W. doi: 10.1117/12.2629385
    [4] CATROPA D, MCLEOD B, D'ARCO J, et al. Piston-tip-tilt mirror array in the wide field phasing testbed for the giant Magellan telescope[J]. Proceedings of the SPIE, 2022, 12185: 121854I. doi: 10.1117/12.2630703
    [5] DEMERS R, BOUCHEZ A, QUIRÓS-PACHECO F, et al. Phasing the segmented giant Magellan telescope: progress in testbeds and prototypes[J]. Proceedings of the SPIE, 2022, 12185: 1218518. doi: 10.1117/12.2630144
    [6] YANG P Q, HIPPLER S, DEEN C P, et al. Characterization of the transmitted near-infrared wavefront error for the GRAVITY/VLTI Coudé infrared adaptive optics system[J]. Optics Express, 2013, 21(7): 9069-9080. doi: 10.1364/OE.21.009069
    [7] BONNEFOIS A M, FUSCO T, MEIMON S, et al. Comparative theoretical and experimental study of a Shack-Hartmann and a phase diversity sensor, for high-precision wavefront sensing dedicated to space active optics[J]. Proceedings of the SPIE, 2017, 10563: 105634B. doi: 10.1117/12.2304263
    [8] VOSTEEN L L A, DRAAISMA F, VAN WERKHOVEN W P, et al. Wavefront sensor for the ESA-GAIA mission[J]. Proceedings of the SPIE, 2009, 7439: 743914. doi: 10.1117/12.825240
    [9] TRAUGER J, STAPELFELDT K, TRAUB W, et al. ACCESS: a NASA mission concept study of an actively corrected coronagraph for exoplanet system studies[J]. Proceedings of the SPIE, 2008, 7010: 701029. doi: 10.1117/12.789119
    [10] LIOTARD A, BERNOT M, CARLAVAN M, et al. Wave-front sensing for space active optics: rascasse project[J]. Proceedings of the SPIE, 2017, 10563: 105632W. doi: 10.1117/12.2304111
    [11] CHEFFOT A L, PLANTET C, PINNA E, et al. Differential piston sensing with LIFT: application to the GMT[J]. Proceedings of the SPIE, 2022, 12185: 1218557. doi: 10.1117/12.2630046
    [12] HEDGLEN A D, CLOSE L M, HAFFERT S Y, et al. First lab results of segment/petal phasing with a pyramid wavefront sensor and a novel holographic dispersed fringe sensor (HDFS) from the giant Magellan telescope high contrast adaptive optics phasing testbed[J]. Proceedings of the SPIE, 2022, 12185: 1218516. doi: 10.1117/12.2629538
    [13] WILHELM R, LUONG B, COURTEVILLE A, et al. Dual-wavelength low-coherence instantaneous phase-shifting interferometer to measure the shape of a segmented mirror with subnanometer precision[J]. Applied Optics, 2008, 47(29): 5473-5491. doi: 10.1364/AO.47.005473
    [14] CODONA J L, DOBLE N. James Webb space telescope segment phasing using differential optical transfer functions[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2015, 1(2): 029001. doi: 10.1117/1.JATIS.1.2.029001
    [15] ACTON D S, KNIGHT J S, CONTOS A, et al. Wavefront sensing and controls for the James Webb space telescope[J]. Proceedings of the SPIE, 2012, 8442: 84422H. doi: 10.1117/12.925015
    [16] LI L L, ZHAO H T, LIU C, et al. Intelligent metasurfaces: control, communication and computing[J]. eLight, 2022, 2: 7. doi: 10.1186/s43593-022-00013-3
    [17] LIU ZH, WANG SH Q, RAO CH H. The co-phasing detection method for sparse optical synthetic aperture systems[J]. Chinese Physics B, 2012, 21(6): 069501. doi: 10.1088/1674-1056/21/6/069501
    [18] CHEN ZH G, SEGEV M. Highlighting photonics: looking into the next decade[J]. eLight, 2021, 1: 2. doi: 10.1186/s43593-021-00002-y
    [19] SIROHI R. Shearography and its applications—a chronological review[J]. Light: Advanced Manufacturing, 2022, 3(1): 35-64. doi: 10.37188/lam.2022.001
    [20] AN Q CH, ZHANG H F, WU X X, et al. Photonics large-survey telescope internal motion metrology system[J]. Photonics, 2023, 10(5): 595. doi: 10.3390/photonics10050595
    [21] EISENHAUER F, PERRIN G, STRAUBMEIER C, et al. GRAVITY: microarcsecond astrometry and deep interferometric imaging with the VLTI[J]. Proceedings of the International Astronomical Union, 2007, 3(S248): 100-101. doi: 10.1017/S1743921308018723
  • 加载中
图(7)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  12
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 网络出版日期:  2024-12-06

目录

    /

    返回文章
    返回
    Baidu
    map