留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation and sensing characteristics of long-period fiber gratings based on periodic microchannels

SUN Cai LI Yuan-jun YANG He-er PAN Xue-peng LIU Shan-ren WANG Bo GAO Meng-meng GUO Qi YU Yong-sen

孙财, 李元君, 杨禾儿, 潘学鹏, 刘善仁, 王博, 高萌萌, 国旗, 于永森. 基于周期性微通道长周期光纤光栅的制备与传感特性研究[J]. 188bet网站真的吗 . doi: 10.37188/CO.EN-2024-0005
引用本文: 孙财, 李元君, 杨禾儿, 潘学鹏, 刘善仁, 王博, 高萌萌, 国旗, 于永森. 基于周期性微通道长周期光纤光栅的制备与传感特性研究[J]. 188bet网站真的吗 . doi: 10.37188/CO.EN-2024-0005
SUN Cai, LI Yuan-jun, YANG He-er, PAN Xue-peng, LIU Shan-ren, WANG Bo, GAO Meng-meng, GUO Qi, YU Yong-sen. Preparation and sensing characteristics of long-period fiber gratings based on periodic microchannels[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0005
Citation: SUN Cai, LI Yuan-jun, YANG He-er, PAN Xue-peng, LIU Shan-ren, WANG Bo, GAO Meng-meng, GUO Qi, YU Yong-sen. Preparation and sensing characteristics of long-period fiber gratings based on periodic microchannels[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0005

基于周期性微通道长周期光纤光栅的制备与传感特性研究

详细信息
  • 中图分类号: TN253

Preparation and sensing characteristics of long-period fiber gratings based on periodic microchannels

doi: 10.37188/CO.EN-2024-0005
Funds: Supported by National Natural Science Foundation of China (No. 62090064, No. 62131018, No. 62305130, No. 62090063, No. 62075082, No. U20A20210, No. 61827821)
More Information
    Author Bio:

    YU Yong-sen (1974—), male, from Changchun, Jilin Province, Ph.D., Professor, Ph.D. Supervisor, obtained Ph.D. from Jilin University in 2005, mainly engaged in researching fiber sensing and laser micro-nano processing. E-mail: yuys@jlu.edu.cn

    Corresponding author: yuys@jlu.edu.cn
  • 摘要:

    长周期光纤光栅因具有体积小、耐腐蚀、抗电磁干扰和灵敏度高等优点,广泛应用于生物医学、电力工业以及航空航天等领域。本文研制了一种基于周期微通道的长周期光纤光栅传感器。首先通过飞秒金宝搏188软件怎么用 微加工在单模光纤的包层中刻蚀出一系列直线结构,然后通过湿法腐蚀技术对金宝搏188软件怎么用 改性区域进行选择性腐蚀以获得周期性微通道结构,最后在通道中填充聚二甲基硅氧烷(PDMS)以改善光谱质量。实验结果表明,该传感器可以进行温度、应力、折射率和弯曲等传感参数测量,具有良好的传感灵敏度。温度灵敏度为−55.19 pm/°C,应变灵敏度为−3.19 pm/με,最大折射率灵敏度为540.28 nm/RIU,弯曲灵敏度为2.65 dB/m−1,且均表现出良好的线性响应。该传感器在精密测量和传感领域有良好的应用前景。

     

  • Figure 1.  The LPFG fabrication system

    Figure 2.  (a) Schematic diagram of the periodic straight-line laser-modified structure by fs laser direct writing. (b) Microscope image of LPFG after HF etching. (c) Microscope image of LPFG filling with PDMS

    Figure 3.  Initial transmission spectrum of LPFG

    Figure 4.  Schematic diagram of the experimental setup for measuring (a) temperature, (b) strain and (c) bending

    Figure 5.  (a) Evolution of the transmission spectrum at different temperatures; (b) relationship between the resonance wavelength shift and the temperature

    Figure 6.  (a) Evolution of the transmission spectrum at different strains; (b) relationship between resonance wavelength shift and strain

    Figure 7.  (a) Evolution of the transmission spectrum at different RI solutions; (b) relationship between resonance wavelength shift and RI

    Figure 8.  (a) Evolution of the transmission spectrum at different curvatures; (b) relationship between resonance intensity shift and curvature

    Table  1.   Comparison of measurement parameters for different types of LPFG

    Year Sensing structure Temperature sensitivity Strain sensitivity RI sensitivity Bending sensitivity Reference
    2013 Periodic microchannels 9.95 pm/°C −2.4 pm/με −391 nm/RIU [19]
    2017 Hollow ellipsoid 0.42 dB/m−1 [21]
    2022 Inner microholes 13.06 pm/°C −1.57 pm/με [20]
    2022 Micro air-channel 12.1 pm/°C 587.08 nm/RIU [26]
    2023 Taped two-mode fiber and PDMS −0.412 nm/°C −12.16 nm/MPa [6]
    2023 D-shape 45 pm/°C 17.6 nm/ m−1 [27]
    2024 Periodic microchannels on the
    cladding and PDMS
    −55.19 pm/°C −3.19 pm/με 540.28 nm/RIU 2.65 dB/m−1 This work
    下载: 导出CSV
    Baidu
  • [1] JIANG J J, HUANG Q Q, MA Y H, et al. Wavelength-tunable L-band mode-locked fiber laser using a long-period fiber grating[J]. Optics Express, 2021, 29(17): 26332-26339. doi: 10.1364/OE.433298
    [2] ZHENG ZH M, YU Y S, ZHANG X Y, et al. Femtosecond laser inscribed small-period long-period fiber gratings with dual-parameter sensing[J]. IEEE Sensors Journal, 2018, 18(3): 1100-1103. doi: 10.1109/JSEN.2017.2761794
    [3] ZHANG Y N, JIANG P, QIAO D, et al. Sensing characteristics of long period grating by writing directly in SMF-28 based on 800 nm femtosecond laser pulses[J]. Optics & Laser Technology, 2020, 121: 105839.
    [4] MA Y W, LI X Y, WANG S Y, et al. Highly sensitive strain sensor based on a long-period fiber grating with chain-shaped structure[J]. Applied Optics, 2020, 59(33): 10278-10282. doi: 10.1364/AO.404861
    [5] WANG Q, DU CH, ZHANG J M, et al. Sensitivity-enhanced temperature sensor based on PDMS-coated long period fiber grating[J]. Optics Communications, 2016, 377: 89-93. doi: 10.1016/j.optcom.2016.05.039
    [6] DENG L F, JIANG CH, HU CH J, et al. Highly sensitive temperature and gas pressure sensor based on long-period fiber grating inscribed in tapered two-mode fiber and PDMS[J]. IEEE Sensors Journal, 2023, 23(14): 15578-15585. doi: 10.1109/JSEN.2023.3279091
    [7] BARRERA D, MADRIGAL J, SALES S. Long period gratings in multicore optical fibers for directional curvature sensor implementation[J]. Journal of Lightwave Technology, 2018, 36(4): 1063-1068. doi: 10.1109/JLT.2017.2764951
    [8] ZHOU Q, ZHANG W G, CHEN L, et al. Bending vector sensor based on a sector-shaped long-period grating[J]. IEEE Photonics Technology Letters, 2015, 27(7): 713-716. doi: 10.1109/LPT.2015.2390251
    [9] ESPOSITO F, SRIVASTAVA A, SANSONE L, et al. Sensitivity enhancement in long period gratings by mode transition in uncoated double cladding fibers[J]. IEEE Sensors Journal, 2020, 20(1): 234-241. doi: 10.1109/JSEN.2019.2942639
    [10] ESPOSITO F, SANSONE L, SRIVASTAVA A, et al. Label-free detection of vitamin D by optical biosensing based on long period fiber grating[J]. Sensors and Actuators B: Chemical, 2021, 347: 130637. doi: 10.1016/j.snb.2021.130637
    [11] PENG M, LU ZH Q, TANG Y, et al. Femtosecond laser direct writing of long period fiber grating sensor with high refractive index sensitivity[J]. Optical Fiber Technology, 2023, 81: 103511. doi: 10.1016/j.yofte.2023.103511
    [12] REN K L, REN L Y, LIANG J, et al. Online fabrication scheme of helical long-period fiber grating for liquid-level sensing[J]. Applied Optics, 2016, 55(34): 9675-9679. doi: 10.1364/AO.55.009675
    [13] DENG H CH, WANG R, JIANG X W, et al. A long period grating sensor based on helical capillary optical fiber[J]. Journal of Lightwave Technology, 2021, 39(14): 4884-4891. doi: 10.1109/JLT.2021.3075962
    [14] SHI SH H, WANG X, LUO B B, et al. Avian influenza virus immunosensor based on etched long period fiber grating coated with graphene oxide[J]. Acta Photonica Sinica, 2020, 49(1): 0106002. (in Chinese). doi: 10.3788/gzxb20204901.0106002
    [15] HINDLE F, FERTEIN E, PRZYGODZKI C, et al. Inscription of long-period gratings in pure silica and germano-silicate fiber cores by femtosecond laser irradiation[J]. IEEE Photonics Technology Letters, 2004, 16(8): 1861-1863. doi: 10.1109/LPT.2004.831264
    [16] NIKOGOSYAN D N. Long-period gratings in a standard telecom fibre fabricated by high-intensity femtosecond UV and near-UV laser pulses[J]. Measurement Science and Technology, 2006, 17(5): 960-967. doi: 10.1088/0957-0233/17/5/S04
    [17] ZHANG L, LIU Y Q, ZHAO Y H, et al. High sensitivity twist sensor based on helical long-period grating written in two-mode fiber[J]. IEEE Photonics Technology Letters, 2016, 28(15): 1629-1632. doi: 10.1109/LPT.2016.2555326
    [18] WANG L, ZHANG W G, CHEN L, et al. Torsion sensor based on two cascaded long period fiber gratings fabricated by CO2 laser pulse irradiation and HF etching technique respectively[J]. Journal of Modern Optics, 2017, 64(5): 541-545. doi: 10.1080/09500340.2016.1249424
    [19] GUO J CH, YU Y S, XUE Y, et al. Compact long-period fiber gratings based on periodic microchannels[J]. IEEE Photonics Technology Letters, 2013, 25(2): 111-114. doi: 10.1109/LPT.2012.2227701
    [20] LAN F L, WANG D N. Long-period fiber grating based on inner microholes in optical fiber[J]. Optics Letters, 2022, 47(1): 146-149. doi: 10.1364/OL.447225
    [21] GONG H P, WANG D N, XIONG M L, et al. Optical fiber hollow ellipsoid for directional bend sensing with a large bending range[J]. Optical Materials Express, 2017, 7(6): 1767-1776. doi: 10.1364/OME.7.001767
    [22] LAI Y, ZHOU K, ZHANG L, et al. Microchannels in conventional single-mode fibers[J]. Optics Letters, 2006, 31(17): 2559-2561. doi: 10.1364/OL.31.002559
    [23] DONG X R, SUN X Y, LI H T, et al. Femtosecond laser fabrication of long period fiber gratings by a transversal-scanning inscription method and the research of its orientational bending characteristics[J]. Optics & Laser Technology, 2015, 71: 68-72.
    [24] HECK M, KRÄMER R G, ULLSPERGER T, et al. Efficient long period fiber gratings inscribed with femtosecond pulses and an amplitude mask[J]. Optics Letters, 2019, 44(16): 3980-3983. doi: 10.1364/OL.44.003980
    [25] ZHANG SH SH, FANG CH Q, ZHANG CH, et al. A compact ultra-long period fiber grating based on cascading up-tapers[J]. IEEE Sensors Journal, 2020, 20(15): 8552-8558. doi: 10.1109/JSEN.2020.2985311
    [26] CHAO X W, WANG D N. Ultra-short long-period fiber grating based on a micro air-channel structure[J]. Optics Letters, 2022, 47(22): 5961-5964. doi: 10.1364/OL.476504
    [27] WANG Q Y, DU CH, ZHAO SH, et al. Curvature sensor based on D-shape fiber long period fiber grating inscribed and polished by CO2 laser[J]. Measurement, 2023, 223: 113665. doi: 10.1016/j.measurement.2023.113665
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  153
  • HTML全文浏览量:  140
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-02
  • 录用日期:  2024-03-07
  • 网络出版日期:  2024-03-19

目录

    /

    返回文章
    返回
    Baidu
    map