留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of GaInP and GaAsP inserted into waveguide/barrier interface on carrier leakage in InAlGaAs quantum well 808-nm laser diode

FU Meng-jie DONG Hai-liang JIA Zhi-gang JIA Wei LIANG Jian XU Bing-she

付梦洁, 董海亮, 贾志刚, 贾伟, 梁建, 许并社. 波导/势垒界面插入GaInP和GaAsP对InAlGaAs量子阱808-nm半导体金宝搏188软件怎么用 器载流子泄漏的影响[J]. 188bet网站真的吗 . doi: 10.37188/CO.EN-2024-0006
引用本文: 付梦洁, 董海亮, 贾志刚, 贾伟, 梁建, 许并社. 波导/势垒界面插入GaInP和GaAsP对InAlGaAs量子阱808-nm半导体金宝搏188软件怎么用 器载流子泄漏的影响[J]. 188bet网站真的吗 . doi: 10.37188/CO.EN-2024-0006
FU Meng-jie, DONG Hai-liang, JIA Zhi-gang, JIA Wei, LIANG Jian, XU Bing-she. Effect of GaInP and GaAsP inserted into waveguide/barrier interface on carrier leakage in InAlGaAs quantum well 808-nm laser diode[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0006
Citation: FU Meng-jie, DONG Hai-liang, JIA Zhi-gang, JIA Wei, LIANG Jian, XU Bing-she. Effect of GaInP and GaAsP inserted into waveguide/barrier interface on carrier leakage in InAlGaAs quantum well 808-nm laser diode[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0006

波导/势垒界面插入GaInP和GaAsP对InAlGaAs量子阱808-nm半导体金宝搏188软件怎么用 器载流子泄漏的影响

详细信息
  • 中图分类号: TN248.4

Effect of GaInP and GaAsP inserted into waveguide/barrier interface on carrier leakage in InAlGaAs quantum well 808-nm laser diode

doi: 10.37188/CO.EN-2024-0006
Funds: Supported by National Natural Science Foundation of China (No. 61904120, No. 21972103); Shanxi “1331 project” and the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (No. 2022SX-TD018, No. 2021SX-AT001, 002 and 003)
More Information
    Author Bio:

    FU Meng-jie (1996—), female, born in Shangqiu, Henan Province. She received her bachelor's degree from Henan University of Urban Construction in 2020, and is now a master candidate in the School of Taiyuan University of Technology. She is mainly engaged in the design of epitaxial structure for 808 nm LD. E-mail: 2227240245@qq.com

    DONG Hai-liang (1984—), born in Dongming country, Shandong province M. S. Supervisor. He received his B. S. degree from Ludong University in 2008, M. S. degree from Taiyuan University of Technology in 2011, and Ph. D. degree from Taiyuan University of Technology in 2016; Since 2019, he has been working as a senior experiment in the Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology; His main research work is GaAs and GaN based semiconductor lasers, the Light-emitting device structure design, epitaxial material growth and performance characterization. E-mail: dhltyut@163.com

    Mr. Xu Bingshe (1959—), born in Yicheng City, Shanxi province, Professor and Doctoral Supervisor, received his Bachelor's Degree from Taiyuan University of Technology in 1978, and his Doctoral Degree from the University of Tokyo in 1994. He has presided and currently is working on more than 50 national and provincial projects, such as the National Outstanding Young Scientist Fund, the National 973 Program, the International Science and Technology Cooperation Program of the Ministry of Science and Technology, the Major Research Program of the National Natural Science Foundation of China (Nano Special Project), the National Natural Science Foundation of China, and the Sino-Japanese International Cooperation Program of the National Natural Science Foundation of China, and so on. His research interests include nano and thin film functional materials and their devices. He has published more than 450 papers in Advanced Functional Materials, Angewandte Chemie, Acta Materialia, and other national and international journals. E-mail: xubs@tyut.edu.cn

    Corresponding author: dhltyut@163.comxubs@tyut.edu.cn
  • 摘要:

    传统半导体金宝搏188软件怎么用 器由于载流子泄漏严重,在波导区域发生非辐射复合,进而降低了输出功率和电光转换效率。本文设计了一种新型外延结构,通过在有源区两侧势垒和波导层之间分别插入n-Ga0.55In0.45P和p-GaAs0.6P0.4材料,调控能带结构,增大了阻挡载流子泄漏的势垒高度,抑制了载流子泄漏。研究结果表明,相较于传统结构器件,泄漏电流密度降低了87.71%。在25 °C注入电流密度为5 A/cm2时,新型外延结构的非辐射复合电流密度降低至37.411 A/cm2,输出功率达12.80 W,电光转换效率达78.24%。此外,在5 °C~65 °C温度变化范围内,中心波长的温漂系数为0.206 nm/°C,阈值电流随温度变化的拟合直线的斜率为0.00113。本文所设计结构为抑制载流子泄漏提供了理论依据。

     

  • Figure 1.  Diagram of three LDs’ epitaxial structures

    Figure 2.  (a) Refractive index and TE mode optic field intensity distributions of three LDs; (b) magnified diagrams in the range of 17501900 nm for LD1, LD2, and LD3

    Figure 3.  Curves of (a) quantum well external loss (αOut), (b) quantum well internal loss (αQW), and (c) total optical loss (αTotal) of three LDs as a function of injection current

    Figure 4.  (a) The energy band comparison of the LDs with three structures at an injection current of 10 A and (b) the magnification of LD1, LD2, and LD3 in the 17601860 nm range

    Figure 5.  (a) Leakage current density, (b) Auger recombination current density (c) SRH recombination current density, and (d) nonradiative recombination current density of three LDs as a function of injection current

    Figure 6.  (a) Threshold current of three LDs; (b) operating voltage, (c) output power and (d) WPE of three LDs as a function of injection current

    Figure 7.  (a) Fitted curves of wavelength and (b) threshold current of three LDs as a function of temperature

    Table  1.   Parameters of 808-nm LD’s epitaxial structures

    Structure Materials Thicknesses /nm Doping concentration /cm−3
    p-Contact layer GaAs 350 1×1019
    p-Cladding layer Al0.55Ga0.45As 1000 1×1019
    p-Waveguide layer Al0.35-0.55Ga0.65-0.45As 300 1×1017~1×1018
    p-Insertion layer Ga0.55In0.45P/GaAs0.6P0.4 8 1×1017
    p-Barrier layer Al0.2Ga0.8As 6 0
    Quantum well In0.14Al0.16Ga0.7As 5 0
    n-Barrier layer Al0.2Ga0.8As 6 0
    n-Insertion layer Ga0.55In0.45P 8 1×1017
    n-Waveguide layer Al0.35-0.55Ga0.65-0.45As 600 1×1017~1×1018
    n-Cladding layer Al0.55Ga0.45As 1200 1×1019
    n-Substrate GaAs 2000 1×1019
    下载: 导出CSV
    Baidu
  • [1] CRUMP P, ERBERT G, WENZEL H, et al. Efficient high-power laser diodes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 1501211. doi: 10.1109/JSTQE.2013.2239961
    [2] KAUSHAL H, KADDOUM G. Applications of lasers for tactical military operations[J]. IEEE Access, 2017, 5: 20736-20753. doi: 10.1109/ACCESS.2017.2755678
    [3] LI X Y, JIANG K, ZHU ZH, et al. High-brightness 808 nm semiconductor laser diode packaged by SiC heat sink[J]. Journal of Modern Optics, 2020, 67(11): 1017-1021. doi: 10.1080/09500340.2020.1810339
    [4] REHIOUI O, BECHOU L, FILLARDET T, et al. Degradation analysis of individual emitters in 808nm QCW laser diode array for space applications[J]. Proceedings of SPIE, 2010, 7583: 758314. doi: 10.1117/12.840671
    [5] WANG B G, TAN SH Y, ZHOU L, et al. High reliability 808nm laser diodes with output power over 19W under CW operation[J]. IEEE Photonics Technology Letters, 2022, 34(6): 349-352. doi: 10.1109/LPT.2022.3156913
    [6] FREVERT C, CRUMP P, BUGGE F, et al. The impact of low Al-content waveguides on power and efficiency of 9xx nm diode lasers between 200 and 300 K[J]. Semiconductor Science and Technology, 2016, 31(2): 025003. doi: 10.1088/0268-1242/31/2/025003
    [7] ZHANG B, WANG H ZH, WANG X, et al. Effect of GaAs insertion layer on the properties improvement of InGaAs/AlGaAs multiple quantum wells grown by metal-organic chemical vapor deposition[J]. Journal of Alloys and Compounds, 2021, 872: 159470. doi: 10.1016/j.jallcom.2021.159470
    [8] CAO Y L, LIAN P, MA W Q, et al. Influence of GaAsP insertion layers on performance of InGaAsP/InGaP/AlGaAs quantum-well laser[J]. Chinese Physics Letters, 2006, 23(9): 2583-2586. doi: 10.1088/0256-307X/23/9/065
    [9] LI X, ZHAO D G, JIANG D SH, et al. Suppression of electron leakage in 808 nm laser diodes with asymmetric waveguide layer[J]. Journal of Semiconductors, 2016, 37(1): 014007. doi: 10.1088/1674-4926/37/1/014007
    [10] ASRYAN L V, ZUBOV F I, KRYZHANOVSKAYA N V, et al. Lasers with asymmetric barrier layers: a promising type of injection lasers[J]. Journal of Physics: Conference Series, 2016, 741: 012111. doi: 10.1088/1742-6596/741/1/012111
    [11] ZUBOV F I, MURETOVA M E, ASRYAN L V, et al. Feasibility study for Al-free 808 nm lasers with asymmetric barriers suppressing waveguide recombination[J]. Journal of Applied Physics, 2018, 124(13): 133105. doi: 10.1063/1.5039442
    [12] ZHANG X, DONG H L, JIA ZH G, et al. Effect of Ga1−xInxAs1−yPy Al-free asymmetric barrier on GaAs-based 808-nm laser diode[J]. Optics Letters, 2022, 47(5): 1153-1156.
    [13] YUAN Q H, JING H Q, ZHONG L, et al. High-power and high-reliability 9XX-nm laser diode[J]. Chinese Journal of Lasers, 2020, 47(4): 0401006. (in Chinese). doi: 10.3788/CJL202047.0401006
    [14] ZHANG J, NING Y Q, ZENG Y G, et al. Design and analysis of high-temperature operating 795 nm VCSELs for chip-scale atomic clocks[J]. Laser Physics Letters, 2013, 10(4): 045802. doi: 10.1088/1612-2011/10/4/045802
    [15] ZHANG Y, NING Y Q, ZHANG L S, et al. Design and comparison of GaAs, GaAsP and InGaAlAs quantum-well active regions for 808-nm VCSELs[J]. Optics Express, 2011, 19(13): 12569-12581. doi: 10.1364/OE.19.012569
    [16] LAN Y, YANG G W, LIU Y X, et al. 808 nm broad-area laser diodes designed for high efficiency at high-temperature operation[J]. Semiconductor Science and Technology, 2021, 36(10): 105012. doi: 10.1088/1361-6641/ac2160
    [17] SLIPCHENKO S O, VINOKUROV D A, PIKHTIN N A, et al. Ultralow internal optical loss in separate-confinement quantum-well laser heterostructures[J]. Semiconductors, 2004, 38(12): 1430-1439. doi: 10.1134/1.1836066
    [18] LIU Y X, YANG G W, ZHAO Y M, et al. 48 W continuous-wave output from a high-efficiency single emitter laser diode at 915 nm[J]. IEEE Photonics Technology Letters, 2022, 34(22): 1218-1221. doi: 10.1109/LPT.2022.3207786
    [19] MAN Y X, ZHONG L, MA X Y, et al. 975 nm semiconductor lasers with ultra-low internal optical loss[J]. Acta Optica Sinica, 2020, 40(19): 1914001. (in Chinese). doi: 10.3788/AOS202040.1914001
    [20] AVRUTIN E A, RYVKIN B S, KOSTAMOVAARA J T. AlGaAs/GaAs asymmetric-waveguide, short cavity laser diode design with a bulk active layer near the p-cladding for high pulsed power emission[J]. IET Optoelectronics, 2021, 15(4): 194-199. doi: 10.1049/ote2.12033
    [21] RYVKIN B S, AVRUTIN E A. Asymmetric, nonbroadened large optical cavity waveguide structures for high-power long-wavelength semiconductor lasers[J]. Journal of Applied Physics, 2005, 97(12): 123103. doi: 10.1063/1.1928309
    [22] ZUBOV F I, MURETOVA M E, PAYUSOV A S, et al. Parasitic recombination in a laser with asymmetric barrier layers[J]. Semiconductors, 2020, 54(3): 366-373. doi: 10.1134/S1063782620030203
    [23] ZHANG X L, DONG H L, ZHANG X, et al. Reduction of nonradiative recombination for high-power 808 nm laser diode adopting InGaAsP/InGaAsP/GaAsP active region[J]. Optics Communications, 2023, 537: 129461. doi: 10.1016/j.optcom.2023.129461
    [24] KHALFIN V B, GULAKOV A B, KOCHNEV I V, et al. The influence of leakage on the characteristics of QW lasers[J]. AIP Conference Proceedings, 1991, 240(1): 49-57.
    [25] KAIFUCHI Y, YOSHIDA K, YAMAGATA Y, et al. Enhanced power conversion efficiency in 900-nm range single emitter broad stripe laser diodes maintaining high power operability[J]. Proceedings of SPIE, 2019, 10900: 109000F.
    [26] XU B SH, QU K, WANG ZH Y, et al. Investigation of photoelectric performance of laser diode by regulation of p-waveguide layer thickness[J]. Optik, 2020, 200: 163458. doi: 10.1016/j.ijleo.2019.163458
    [27] WU SH H, LI T, WANG ZH F, et al. Study of temperature effects on the design of active region for 808 nm high-power semiconductor laser[J]. Crystals, 2023, 13(1): 85-99. doi: 10.3390/cryst13010085
    [28] WENZEL H, ERBERT G, BUGGE F, et al. Optimization of GaAsP-QWs for high-power diode lasers at 800 nm[J]. Proceedings of SPIE, 2000, 3947: 32-38. doi: 10.1117/12.382104
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  27
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-27
  • 录用日期:  2024-05-06
  • 网络出版日期:  2024-05-17

目录

    /

    返回文章
    返回
    Baidu
    map