Layer self-assembly of gold nanoparticles surface plasmon triggered photoelectric current applied plasmon sensitized solar cell
-
摘要:等离子体增感太阳能电池中,层层自组装金纳米粒子的表面等离子体共振能产生光电电流,金纳米粒子层的光电转换效率随表面等离子体共振强度的提升而增加。等离子体增感太阳能电池初步试验光电转换效能为0.75%。利用模型仿真电荷分离的现象、光电电流的产生,以及表面等离子体共振和光电电流产生之间的关系来解释实验结果。在未来,通过优化等离子体增感太阳能电池组件,可以进一步提升其转换效率。这在表面等离子体激活太阳能电池及等离子体太阳能电池领域将有很大应用潜力。Abstract:In plasmon-sensitized solar cells, layer self-assembly of gold nanoparticles surface plasmon resonance can produce photoelectric current. Photoelectric conversion efficiency of gold nanoparticles layer increases with the intensity of surface plasmon resonance. The efficiency is up to 0.75%. We use the model to simulate the phenomenon of charge separation, produce of photoelectric current and relationship between surface plasmon resonance and the photoelectric currents to explain the experimental results. In the future, these nanoparticle materials have considerable potential applications in surface plasmon activated solar cells and solar cells plasmon.
-
Key words:
- solar cell/
- gold nanoparticles/
- surface plasmon
-
[1] HUANG X Q, TANG S H, MU X L,et al.. Freestanding palladium nanosheets with plasmonic and catalytic properties[J].Nat. Nanotechnol, 2011, 6:28-32. [2] KABASHIN A V, EVANS P, PASTKOVSKY S,et al.. Plasmonic nanorod metamaterials for biosensing, plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J].Nat. Mater., 2009, 8:867-871. [3] LI H B, LI F Y, HAN C P,et al.. Highly sensitive and selective tryptophan colorimetric sensor based on 4, 4-bipyridine-functionalized silver nanoparticles[J].Sens Actuat B Chem., 2009, 145:194. [4] TIAN Y, SHI X, LU C Q,et al.. Charge separation in solid-state gold nanoparticles-sensitized photovoltaic cell[J].Electrochem. Commun., 2009, 11:1603-1605. [5] CUEVAS-MUNIZ F M, GUERRA-BALCAZAR M, CASTANEDA F,et al.. Performance of Au and AuAg nanoparticles supported on Vulcan in a glucose laminar membraneless microfuel cell[J].J. Power Sources, 2011, 196:5853. [6] LU Y Z, WANG Y C, CHEN W. Silver nanorods for oxygen reduction:strong effects of protecting ligand on the electrocatalytic activity[J].J. Power Sources, 2011, 196:3033. [7] ZHOU H Q, QIU C Y, YU F,et al.. Thickness-dependent morphologies and surface-enhanced raman scattering of Ag deposited on n-Layer graphenes[J].J. Phys. Chem. C, 2011, 115:11348-11354. [8] NIU B J, WU L L, TANG W,et al.. Enhancement of near-band edge emission of Au/ZnO composite nanobelts by surface plasmon resonance[J].Cry. Steng. Comm., 2011, 13:3678-3681. [9] SU Y H, TU S L, TSENG S W,et al.. Influence of surface plasmon resonance on the emission intermittency of photoluminescence from gold nano-sea-urchins[J].Nanoscale, 2010, 2:2639-2646. [10] BABA A, AOKI N, SHINBO K,et al.. Grating-coupled surface plasmon enhanced short-circuit current in organic thin-film photovoltaic cells[J].ACS Appl. Mater. Interf., 2011, 3:2080-2084. [11] FURUBE A, DU L, HARA K,et al.. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2nanoparticles[J].J. Am. Chem. Soc., 2007, 129:14852. [12] LINIC S, CHRISTOPHER P, INGRAM D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J].Nat. Mater., 2011, 10:911. [13] TIAN Y, TATSUMA T. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2[J].Chem. Commun.(Camb), 2004(16):1810-1811. [14] TIAN Y, TATSUMA T. Mechanisms and applications of plasmon-induced charge separation at TiO2films loaded with gold nanoparticles[J].J Am Chem Soc, 2005, 127:7632. [15] Two highly dispersed metallic oxides by the aerosil process[J].Degussa Technical Bulletin, 1990(56):3-21. [16] ZHU M, AIKENS C M, HOLLANDER F J,et al.. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties[J].J. Am. Chem. Soc., 2008, 130:5883. [17] FURUBE A, DU L, HARA K,et al.. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2nanoparticles[J].J. Am. Chem. Soc., 2007, 129:14852. [18] MCFARLAND E W, TANG J. A photovoltaic device structure based on internal electron emission[J].Nature, 2003, 421:616. [19] BISQUERT J, CAHEN D, HODES G,et al.. Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells[J].J. Phys. Chem. B, 2004, 108:8106. [20] WANG Q, ITO S, GRATZEL M,et al.. Characteristics of high efficiency dye-sensitized solar cells[J].J. Phys. Chem. B, 2006, 110:25210. [21] SMESTAD G P.Optoelectronics of Solar Cells[M]. Washington, DC:SPIE, 2002. [22] WURFEL P. Physics of Solar Cells:From Principles to New Concepts [M]. Weinhein:Wiley-VCH Verlag GmbH & Co. KGaA, 2005.
计量
- 文章访问数:1458
- HTML全文浏览量:256
- PDF下载量:565
- 被引次数:0