留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

目标跟踪技术综述

高文,朱明,贺柏根,吴笑天

downloadPDF
高文, 朱明, 贺柏根, 吴笑天. 目标跟踪技术综述[J]. , 2014, 7(3): 365-375. doi: 10.3788/CO.20140703.0365
引用本文: 高文, 朱明, 贺柏根, 吴笑天. 目标跟踪技术综述[J]. , 2014, 7(3): 365-375.doi:10.3788/CO.20140703.0365
GAO Wen, ZHU Ming, HE Bai-gen, WU Xiao-tian. Overview of target tracking technology[J]. Chinese Optics, 2014, 7(3): 365-375. doi: 10.3788/CO.20140703.0365
Citation: GAO Wen, ZHU Ming, HE Bai-gen, WU Xiao-tian. Overview of target tracking technology[J].Chinese Optics, 2014, 7(3): 365-375.doi:10.3788/CO.20140703.0365

目标跟踪技术综述

doi:10.3788/CO.20140703.0365
基金项目:

中国科学院航空光学成像与测量重点实验室开放基金资助项目(No.Y2HC1SR121)

详细信息
    通讯作者:

    高文

  • 中图分类号:TP394.1

Overview of target tracking technology

  • 摘要:本文回顾了视频目标跟踪方法中常用的目标表示方法,并对目标表示方法进行了系统地分类,对现有的目标跟踪方法进行了分类,并对每类中具有代表性的方法进行了详细描述,分析各类别的优缺点。讨论了目标跟踪的难点以及未来的发展趋势,为相关研究人员了解目标跟踪技术提供参考。

  • [1] ELGAMMAL A,DURAISWAMI R,HARWOOD D,et al.. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance[J].IEEE,2002,90(7):1151-1163. [2] AVIDAN S. Support vector tracking[J].IEEE Trans. Patt. Analy. Mach. Intell.,2004,26(8):1064-1072. [3] PARK S,AGGARWAL J K. A hierarchical bayesian network for event recognition of human actions and interactions. Multimed[J].Syst.,2004,10(2):164-179. [4] VEENMAN C,REINDERS M,BACKER E. Resolving motion correspondence for densely moving points[J].IEEE Trans. Patt. Analy. Mach. Intell.,2001,23(1):54-72. [5] SHAFIQUE K,SHAH M. A non-iterative greedy algorithm for multi-frame point correspondence[J].IEEE Trans. Patt. Analy. Mach. Intell.,2005,27(1):110-115. [6] COMANICIU D,RAMESH V,MEER P. Kernel-based object tracking[J].IEEE Trans.Patt. Analy. Mach. Intell.,2003,25:564-575. [7] BLACK M,JEPSON A. Eigentracking:robust matching and tracking of articulated objects using a view-based representation[J].Int. J. Comput. Vision,1998,26(1):63-84. [8] HARITAOGLU I,HARWOOD D,DAVIS L. W4:real-time surveillance of people and their activities[J].IEEE Trans. Patt. Analy. Mach. Intell.,2000,22(8):809-830. [9] 冯小勇,赵忠华,刘新明. 日间恒星实时探测的视频图像处理[J]. 中国光学,2011,4(6):622-628. FENG X Y,ZHAO ZH H,LIU X M. Video image processing of real-time star detection in daylight[J].Chinese J. Optics,2011,4(6):622-628.(in Chinese) [10] MORAVEC H. Visual mapping by a robot rover [C]. Proceedings of the International Joint Conference on Artificial Intelligence(IJCAI),San Francisco,USA,August 20,1979:598-600. [11] HARRIS C,STEPHENS M. A combined corner and edge detector [C]. In 4th Alvey Vision Conference,August 31-September 2,1988:147-151. [12] SHI J,TOMASI C. Good features to track [C]. IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Seattle,WA,June 21-32,1994:593-600. [13] LOWE D. Distinctive image features from scale-invariant keypoints[J].Int. J. Comput. Vision,2004,60(2):91-110. [14] 郝志成,高文. 多模跟踪技术在轮式侦察车图像处理器的应用[J]. 中国光学,2011,4(5):480-488. HAO ZH CH,GAO W. Application of multi-pattarn tracking technique in image processor of wheel type scout car[J].Chinese J. Optics,2011,4(5):480-488.(in Chinese) [15] MIKOLAJCZYK K,SCHMID C. A performance evaluation of local descriptors[J].IEEE Trans. Patt. Analy. Mach. Intell.,2005,27(10):1615-1630. [16] WREN C,AZARBAYEJANI A,PENTLAND A. Pfinder:Real-time tracking of the human body[J].IEEE Trans. Patt. Analy. Mach. Intell.,1997,19(7):780-785. [17] GAO X,BOULT T,COETZEE F,et al.. Error analysis of background adaption [C]. IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Hilton Head Island,SC,June 13-15,2000:503-510. [18] ELGAMMAL A,HARWOOD D,DAVIS L. Non-parametric model for background subtraction [C]. In European Conference on Computer Vision(ECCV),Dublin,Ireland,June 26-July 1,2000,2:751-767. [19] RITTSCHER J,KATO,JOGA S,et al.. A probabilistic background model for tracking [C]. In European Conference on Computer Vision(ECCV),Dublin,Ireland,June 26-July 1,2000,2:336-350. [20] STENGER B,RAMESH V,PARAGIOS N,et al.. Topology free hidden markov models:application to background modeling [C]. IEEE International Conference on Computer Vision(ICCV),Vancouver,BC,July 7-14,2001:294-301. [21] OLIVER N,ROSARIO B,PENTLAND A. A bayesian computer vision system for modeling human interactions[J].IEEE Trans. Patt. Analy. Mach. Intell.,2000,22(8):831-843. [22] MONNET A,MITTAL A,PARAGIOS N,et al.. Background modeling and subtraction of dynamic scenes [C]. IEEE International Conference on Computer Vision(ICCV),Nice,France,October 13-16,2003:1305-1312. [23] ZHONG J,SCLAROFF S. Segmenting foreground objects from a dynamic textured background via a robust kalman filter [C]. IEEE International Conference on Computer Vision(ICCV),Nice,France,October 13-16,2003:44-50. [24] COMANICIU D,MEER P. Mean shift:a robust approach toward feature space analysis[J].IEEE Trans. Patt. Analy. Mach. Intell.,2002,24(5):603-619. [25] ROWLEY H,BALUJA S,KANADE T. Neural network-based face detection[J].IEEE Trans. Patt. Analy. Mach. Intell.,1998,20(1):23-38. [26] VIOLA P,JONES M,SNOW D. Detecting pedestrians using patterns of motion and appearance [C]. IEEE International Conference on Computer Vision(ICCV),Nice,France,October 13-16,2003:734-741. [27] GREWE L,KAK A. Interactive learning of a multi-attribute hash table classifier for fast object recognition[J].Comput. Vision Image Understand,1995,61(3):387-416. [28] PAPAGEORGIOU C,OREN M,POGGIO T. A general framework for object detection [C]. IEEE International Conference on Computer Vision(ICCV),January 4-7,1998:555-562. [29] BLUM A,MITCHELL T. Combining labeled and unlabeled data with co-training [C]. 11th Annual Conference on Computational Learning Theory,July 24,1998:92-100. [30] LEVIN A,VIOLA P,FREUND Y. Unsupervised improvement of visual detectors using co-training [C]. IEEE International Conference on Computer Vision(ICCV),Nice,France,October 13-16,2003:626-633. [31] 颜佳,吴敏渊. 遮挡环境下采用在线Boosting的目标跟踪[J]. 光学 精密工程,2012,20(2):439-446. YAN J,WU M Y. On-line boosting based target tracking under occlusion[J].Opt. Precision Eng.,2012, 20 (2):439-446.(in Chinese) [32] 匡金骏,柴毅,熊庆宇. 结合标准对冲与核函数稀疏分类的目标跟踪[J]. 光学 精密工程,2012,20(11):2540-2547. KUANG J J,CHAI Y,XIONG Q Y. Visual object tracking combined normal hedge and kernel sparse representation classification[J].Opt. Precision Eng.,2012,20(11):2540-2547.(in Chinese) [33] ISARD M,BLAKE A. Condensation-conditional density propagation for visual tracking[J].International J. Computer Vision,1998,29(1):5-28. [34] 王国良,刘金国. 基于粒子滤波的多自由度运动目标跟踪[J]. 光学 精密工程,2011,19(4):864-869. WANG G L,LIU J G. Moving object tracking with multi-degree-of-freedom based on particle filters[J].Opt. Precision Eng.,2011,19(4):864-869.(in Chinese) [35] 龚俊亮,何昕,魏仲慧,等. 采用改进辅助粒子滤波的红外多目标跟踪[J]. 光学 精密工程,2012,20(2):413-421. GONG J L,HE X,WEI ZH H,et al.. Multiple infrared target tracking using improved auxiliary particle filter[J].Opt. Precision Eng.,2012,20(2):413-421.(in Chinese) [36] LI B,CHELLAPPA R,ZHENG Q,et al.. Model-based temporal object verification using video[J].IEEE Trans. Image Process,2001,10(6):897-908. [37] MANSOURI A. Region tracking via level set pdes without motion computation[J].IEEE Trans. Patt.Analy. Mach. Intell.,2002,24(7):947-961. [38] YILMAZ A,LI X,SHAH M. Contour based object tracking with occlusion handling in video acquired using mobile cameras[J].IEEE Trans. Patt. Analy. Mach. Intell.,2004,26(11):1531-1536. [39] 丘文涛,赵建,刘杰. 结合区域分割的SIFT图像匹配方法[J]. 液晶与显示,2012(6):827-831. QIU W T,ZHAO J,LIU J. Image matching algorithm combining SIFT with region segmentation[J].,2012(6):827-831.(in Chinese) [40] 王田,刘伟宁,韩广良,等. 基于改进MeanShift的目标跟踪算法[J]. 液晶与显示,2012(3):396-400. WANG T,LIU W N,HAN G L,et al.. Target tracking algorithm based on improved meanshift[J].,2012(3):396-400.(in Chinese) [41] 李丽,李平,杨明,等. 基于SIFT特征匹配的电力设备外观异常检测方法[J]. 光学与光电技术,2010,8(6):25-31. LI L,LI P,YANG M,et al.. Research on abnormal appearance detection approach of electric power equipment[J].Opt. Optoelectronic Technol.,2010,8(6):25-31.(in Chinese)
  • 加载中
计量
  • 文章访问数:2244
  • HTML全文浏览量:637
  • PDF下载量:1308
  • 被引次数:0
出版历程
  • 收稿日期:2013-10-11
  • 修回日期:2014-02-13
  • 刊出日期:2014-05-25

目录

    /

      返回文章
      返回
        Baidu
        map