Laser beam combination accuracy of wavelength multiplexing
-
摘要:对双光束波长合束精度进行了研究。用镀有特制光学薄膜的滤光片对波长为532和515 nm的两束 进行合束,并对合束精度进行检测。基于此系统,建立了对应理论模型,并对合束及检测的误差来源和大小进行全面分析。两光束指向稳定性均为50 rad时,合束精度理论值为14.69,指向稳定性所占比例为99.26%,系统对质心定位等不稳定因素(误差变化 3倍)抗性极好,精度变化 2.4;指向稳定性提高到23.51 rad时,合束精度理论值为7.09,指向稳定性所占比例为96.77%,系统仍有较高抗干扰能力,精度变化 1%。分析表明,影响近场小功率合束精度的因素有 指向稳定性、机械调节和质心定位误差,其中 指向稳定性是主要因素。通过调节各因素的比例,可对合束的抗干扰能力进行控制。Abstract:Double laser beam combination accuracy of wavelength multiplexing is carried in this article. Two beams with wavelengths of 532 nm and 515 nm are combined into one in the combination and detection system using light filter with special optical thin films, and the combination accuracy is detected. Based on this system, the corresponding theoretical model is established, and the comprehensive analysis on the error source and the value in combination and detection are given in this paper. When the pointing stability of both beams is 50 rad, the theoretical value of combination accuracy is 14.69, and the proportion of pointing stability is 99.26%. The system gets an excellent anti interference ability against the unstable factor such as the error of centroid location(error rate 3 times), and the variation in accuracy rate is less than 2.4 . When the laser pointing stability is increased to 23.51 rad, the highest theoretical value of combination accuracy is 7.09 and the proportion of pointing stability is 96.77%. The system still has a high ability of anti-interference and the variation in the accuracy rate is less than 1%. Factors that affect the beam combination accuracy of near field and small power are laser beam pointing stability, mechanical adjustment and centroid location error are all the factors to affect the combination accuracy of the near field beam with low power, among which the laser pointing stability is the main factor. Adjusting the proportion of each factor, we can control the ability of anti interference of beam combination.
-
[1] 张俊, 彭航宇, 王立军. 半导体 合束技术及应用[J]. 红外与 工程, 2012, 41(12):3193-3197. ZHANG J, PENG H Y, WANG L J. High power diode laser beam combining technology and applications[J].Chinese J. Lasers, 2012, 41(12):3193-3197.(in Chinese)
[2] 郝明明. 大功率半导体 短阵列合束及光纤耦合技术的研究[D].长春:中国科学院长春光学精密机械与物理研究所, 2012. HAO M M. Research on technologies of high power beam combination and fiber coupling for diode laser short arrays[D]. Changchun:Changchun Institute of Optics, Fine Mechanics and Physics, 2012.(in Chinese)
[3] LIU Y Q, CAO Y H, GAO J,et al. The research of fiber-coupled high power diode laser[J].SPIE, 2011, 8192:81922X.
[4] S J M, H K, S B W,et al.100 kw coherently combined slab MOPAs[C]. Conference on Lasers and Electro-Optics, August 30-september 3, 2009, Shanghai:IEEE, 2009.
[5] 梅禹珊, 付秀华, 杨永亮, 等. 光纤 器光学膜设计与制备[J]. 中国光学, 2011, 4(3):299-304. MEI Y SH, FU X H, YANG Y L,et al. Design and preparation of optical films for fiber lasers[J].Chinese Optics, 2011, 4(3), 299-304.(in Chinese)
[6] 卜和阳, 卢振武, 张红鑫, 等. 内掩式透射地基日冕仪中杂光鬼像的消除[J]. 中国光学, 2013, 6(2):231-236. BU H Y, LU ZH W, ZHANG H X,et al. Suppresion of stray light ghost image in internally occulting refractive ground-based coronagraph[J].Chinese Optics, 2013, 6(2):231-236.(in Chinese)
[7] 徐新行, 王兵, 乔健, 等. 快反系统中平面反射镜的轻量化设计[J]. 中国光学, 2012, 5(1):35-41. XU X H, WANG B, QIAO J,et al. Lightweight design of mirror in fast-steering mirror system[J].Chinese Optics, 2012, 5(1):35-41.(in Chines)
[8] 谭馄. 测量 光束抖动的图像技术[J]. 大气与环境光学学报, 2007, 2(1):32-37. TAN K. Image processing techniques for measuring laser beam quivering[J].J. Atmospheric and Environmental Optics, 2007, 2(1):32-37.(in Chinese)
[9] 刘海波, 谭吉春, 沈本剑, 等. 像差对星敏感器星点定位精度的影响[J]. 光学技术, 2009, 35(3):471-473. LIU H B, TAN J CH, SHEN B J,et al. Aberrations effect on position accuracy of star sensor[J].Optical Technique, 2009, 35(3):471-473.(in Chinese)
[10] 张宪亮. 利用CCD测量微小角度的 远场发散角[D].成都:电子科技大学, 2005. ZHANG X L. Measurement of the far-field small divergence angle of laser beams by CCD[D]. Chengdu:University of Electronic Science and Technology of China, 2005.(in Chinese)
[11] 王晓东.大视场高精度星敏感器技术研究[D].长春:中国科学院长春光学精密机械与物理研究所, 2003. WANG X D. Study on wild-field-of-view and high-accuracy star sensor technologies[D]. Changchun:Changchun Institute of Optics, Fine Mechanics and Physics, 2003.(in Chinese)
[12] 周锐, 房建成, 祝世平. 图像测量中光斑尺寸优化及性能分析[J]. 仪器仪表学报, 2000, 21(2):177-180. ZHOU R, FANG J CH, ZHU SH P. Spot size optimization and performance analysis in image measurement[J].Chinese J. Scientific Instrument, 2000, 21(2):177-180.(in Chinese)
[13] 张辉, 袁家虎, 刘恩海. CCD噪声对星敏感器星点定位精度的影响[J]. 红外与 工程, 2006, 35(5):629-633. ZHANG H, YUAN J H, LIU E H. CCD noise effects on position accuracy of star sensor[J].Infrared and Laser Engineering, 2006, 35(5):629-633.(in Chinese)
[14] 曹一磊, 高春清. 基于面阵CCD的 光束参数测量系统精度分析[J]. 光学技术, 2004, 30(5):583-587. CAO Y L, GAO CH Q. Analysis on the accuracy of beam parameter measurement by using CCD array[J].Optical Technique, 2004, 30(5):583-587.(in Chinese)
[15] HANCOCK B R, STIRBL R C, CUNNINGHAM T J,et al. CMOS active pixel sensor specific performance effects on star tracker/imager position accuracy[J].SPIE, 2001, 4284:43-53.
[16] 李春艳, 谢华, 李怀锋, 等. 高精度星敏感器星点光斑质心算法[J]. 光电工程, 2006, 33(2):41-44. LI CH Y, XIE H, LI H F,et al. Centroiding algorithm for high-accuracy star tracker[J].Opto-Electronic Engineering, 2006, 33(2):41-44.(in Chinese)
[17] 杨君, 张涛, 宋靖雁, 等. 星点质心亚像元定位的高精度误差补偿法[J]. 光学 精密工程, 2010, 18(4):1002-1010. YANG J, ZHANG T, SONG J Y,et al. High accuracy error compensation algorithm for star image sub-pixel subdivision location[J].Opt. Precision Eng., 2010, 18(4):1002-1010.(in Chinese)
计量
- 文章访问数:1810
- HTML全文浏览量:518
- PDF下载量:626
- 被引次数:0