Comparison of phase extraction algorithms in testing of phase defects with two-point interference
-
摘要:双点光源移相干涉测量是大口径光学元件位相缺陷检测的一种重要方法。为了分析双点干涉中误差对解相算法的影响,首先给出相位缺陷检测的系统结构和理论模型,在此基础上,针对测量过程中主要存在的一次移相误差、二次移相误差、光强误差和随机振动误差,研究了Hariharan 5帧移相算法、13帧移相算法和迭代随机移相算法的解相误差,并进行了仿真分析。结果表明,针对这几种误差源,13帧算法解相精度整体优于5帧法,迭代随机移相算法解相效果优于13帧法和5帧法,当这几种误差按实际指标同时作用时,迭代随机移相算法解相误差RMS小于5帧法和13帧法,PV值稳定在0.5 nm以内。由于随机振动占主要作用,说明迭代随机移相算法受误差影响很小。Abstract:Two-point interference is an important method in testing of phase defects in optical elements with large diameter. In order to analyze the effects of errors on phase extraction algorithms in two-point interference system, the system structure and theoretical model are given firstly. Based on it, the Hariharan 5-frame algorithm, 13-frame algorithm and the advanced iterative algorithm are studied and simulated considering the linear phase shift error, nonlinear phase shift error, intensity error and random vibration error. The result shows that the accuracy of 13-frame algorithm is generally higher than that of 5-frame algorithm and the effect of advanced iterative algorithm is better than the other two. When the errors are given according to the analysis, the RMS error of the advanced iterative algorithm is less than those of 5-frame algorithm and 13-frame algorithm, and the PV of advanced iterative algorithm is less than 0.5 nm steadily. This means that the error of advanced iterative algorithm is affected less by errors while vibration plays the major role in the errors discussed.
-
表 1不同振幅下解相结果
Table 1.Phase errors due to vibration with different amplitude
Amplitude of vibration/nm 5-frame 13-frame AIA 0 0.48/2.20 0.11/0.31 0.077 8/0.267 1 10 1.37/2.55 0.97/0.60 0.246 7/0.233 4 30 3.36/2.26 3.09/1.40 0.232 6/0.371 3 50 5.90/3.38 5.66/2.39 0.700 6/0.522 8 70 9.41/6.34 8.97/3.44 3.048 1/0.403 0 -
[1] 卢丙辉,刘炳国,孙和义,等.基于子孔径拼接的衍射干涉靶丸形貌检测技术[J].强 与粒子束,2016,28(2):022006.LU B H,LIU B G,SUN H Y,et al.. Technology of target inspection by diffraction interferometer based on sub-aperture stitching[J]. High Power Laser and Particle Beams,2016,28(2):022006.(in Chinese) [2] RAVIZZA F L. Imaging of Phase Objects using Partially Coherent Illumination[R]. Lawrence Livermore National Laboratory(LLNL),Livermore,CA,2013.M. Sheik-Bahae,A. A. Said,E.W. Van Stryland. High-sensitivity,Single-beam n2 Measurements. Opt. Lett. 1989,14:955 957. [3] 钱克矛,续伯钦,伍小平.光学干涉计量中的位相测量方法α[J].实验力学,2001,16(3):239-249.QIAN K M,XU B Q,WU X P, Phase measurement methods in optical interferometry α[J]. J. Experimental Mechanics,2001,16(3):239-249.(in Chinese) [4] 张明照,牟建华,刘扬,等.应用复Morlet小波变换分析条纹图相位[J].光学 精密工程,2012,20(3):643-650.ZHANG M ZH,MOU J H,LIU Y,et al.. Phase extraction for fringe patterns based on complex Morlet wavelet transform[J]. Opt. Precision Eng.,2012,20(3):643-650.(in Chinese) [5] 单小琴,朱日宏,李建欣.基于二维傅里叶变换的单帧干涉图相位提取方法[J].应用光学,2013,34(5):802-808.SHAN X Q,ZHU R H,LI J X. Phase extraction for single frame interferogram based on 2D Fourier transform[J]. J. Applied Optics,2013,34(5):802-808.(in Chinese) [6] 刘江,王飞,王高文,等.免疫投影基准光强变化的五步移相算法在条纹投影偏折法中的应用[J].中国 ,2013 (11):203-209.LIU J,WANG F,WANG G W,et al.. Application of standard intensity insensitive five-step phase-shifting algorithm in projected fringe deflectometry[J]. Chinese J. Lasers,2013 (11):203-209.(in Chinese). [7] 高芬,蒋庄德,李兵,等.基于扩展平均的多步相移算法及误差抑制特性比较[J].光子学报,2013,43(4):426001-0426001.GAO F,JIANG ZH D,LI B,et al.. Multi-step phase-shifting algorithm based on extended averaging technique and its error suppression characteristics comparison[J]. Acta Photonica Sinica,2013,43(4):426001-0426001.(in Chinese) [8] 刘乾,王洋,吉方,等.基于频域分析的抗振移相干涉测量[J].光学 精密工程,2015,23(1):252-259.LIU Q,WANG Y,JI F,et al.. Vibration-insensitive phase-shifting interferometry based on frequency domain analysis[J]. Opt. Precision Eng.,2015,23(1):252-259.(in Chinese) [9] 韩志刚,陈磊.对包络变化及移相误差不敏感的宽带光八步移相算法[J].红外与 工程,2015,44(4):1236-1242.HANG ZH G,CHEN L. Eight-step phase shifting algorithm for broadband light interferometry insensitive to envelop variation and phase shifting error[J]. Infrared and Laser Engineering,2015,44(4):1236-1242.(in Chinese) [10] 卢丙辉,刘国栋,孙和义,等.基于误差互补修正的微球干涉测量相位提取方法[J].中国 ,2015(5):213-219.LIU B H,LIU G D,SUN H Y,et al.. Phase extraction method of microsphere interferometry based on error complementary correction[J]. Chinese J. Lasers,2015(5):213-219.(in Chinese) [11] 张宇,金春水,马冬梅,等.光纤相移点衍射干涉仪关键技术[J].红外与 工程,2015,44(1):254-259.ZHANG Y,JIN CH SH,MA D M,et al.. Key technology for fiber phase-shifting point diffraction interferometer[J]. Infrared and Laser Engineering,2015,44(1):254-259.(in Chinese) [12] DE GROOT P. Measurement of transparent plates with wavelength-tuned phase-shifting interferometry[J]. Applied Optics,2000,39(16):2658-2663. [13] 苏志德.高精度干涉测量随机移相技术研究[D].长春:中国科学院研究生院(长春光学精密机械与物理研究所),2013.SU ZH D. Research on Random Phase Shifting Technology in High Accuracy Interferometry[D]. Changchun:Changchun Institute of optics,Fine Mechanics and Physics,Chinese Academy of Sciences,2013.(in Chinese) [14] 张宇,金春水,马冬梅,等.可见光移相点衍射干涉仪的测试误差分析[J].红外与 工程,2012,41(5):1351-1356.ZHANG Y,JIN CH SH,MA D M,et al.. Analysis of measuring errors for visible light phase shifting point diffraction interferometer[J]. Infrared and Laser Engineering,2012,41(5):1351-1356.(in Chinese) [15] 刘艳,苏东奇,杨怀江,等.高精度干涉检验移相算法对振动误差的免疫能力[J].中国光学与应用光学,2010,3(5):500-508.LIU Y,SU D Q,YANG H J,et al.. Immunity of phase shifting algorithms to vibration errors in high-accuracy interferometry[J]. Chinese J. Optics and Applied Optics,2010,3(5):500-508.(in Chinese) [16] 刘乾.抗振动移相干涉测量算法与实验研究[D].北京:中国工程物理研究院,2015.LIU Q. Research on the algorithm and experiment of vibration-insensitive phase-shifting interferometry[D]. Beijing:China Academy of Engineering Physics,2015.(in Chinese) [17] 于杰.用于相移点衍射干涉仪的加权最小二乘相位提取算法[J].中国光学与应用光学,2010,3(6):605-615.YU J. Weighted least square phase extraction algorithm for phase-shifting point diffraction interferometer[J]. Chinese J. Optics and Applied Optics,2010,3(6):605-615.(in Chinese) [18] 李东,姜宏振,刘勇,等.基于最小二乘迭代的随机移相面形检测技术研究[J]. 与光电子学进展,2015,52(5):98-103.LI D,JIANG H ZH,LIU Y,et al.. Research on randomly phase shifting surface measurement based on least-squares iteration[J]. Laser & Optoelectronics Progress,2015,52(5):98-103.(in Chinese)