-
摘要: 本文对读出原理、像差要求、图谱质量进行深入研究,进而对读出技术进行深度整合与简化,实现光读出FPA红外成像系统小型化、轻量化、集成化。首先,从FPA的热-机械效应出发,介绍了光读出FPA红外成像系统的工作原理;然后,针对通常采用的光读出FPA红外成像系统体积大、重量大、结构复杂缺陷,提出了高集成度的新型光读出系统;接着,在分析讨论读出光路像差容限、特点的基础上,对以异形棱镜为核心元件的光读出系统进行了具体的光学仿真设计;最后,设计了集光、机、电、软技术的集成式光读出FPA红外成像系统。对系统样机测试结果表明:在确保成像性能的前提下,光读出FPA红外成像系统的体积减小到175mm×83mm×105mm。以异形棱镜为核心元件的光读出技术,在满足成像精度和灵敏度的前提下,可减小读出系统的复杂程度,有效降低了光读出FPA红外成像系统的体积和重量,从而促进光读出FPA成像系统的工业化应用。Abstract: After thorough studies on the sensing principle, the tolerance for aberration and the spectrum quality, a simplified and integrated optical readout technology has been put forward and developed, to realize the miniaturization, integration and lightweight of the optical readout focal plane array(FPA) infrared imaging system. First, based on the thermal-mechanical effect of FPA, the working principle of optical readout FPA infrared imaging system is introduced. Secondly, in view of the large size, heavy weight and complicated structure of the conventional system, a novel optical readout system with the characteristics of high integration is presented. Then, after analyzing and discussing the aberration tolerance of optical readout infrared FPA imaging system, the optical readout system containing a special-shaped prism is simulated and designed. Finally, an optical readout infrared FPA imaging system integrated with optics, mechanics, electronics and computer technology is designed and realized. The system prototype is implemented and the experimental results indicate that the size of the optical readout infrared FPA imaging system is reduced to 175mm×83mm×105mm, on the premise of guaranteeing the image quality and sensitivity. The optical readout FPA infrared imaging system with a special-shaped prism as the core component can effectively reduce the volume, weight and power consumption of the imaging system, and promote the system's industrial application.
-
Key words:
- FPA /
- IR imaging system /
- optical readout /
- special-shaped prism
-
表 1 主要器件参数
Table 1. Parameters of the main devices
Characteristic Value 光源 波长/nm 525~531 FPA 像元数 256×256 有效面积H×W/mm×mm 184×140 单像元有效面积H×W/μm×μm 59×79 CCD 有效像元数H×W 659×494 有效面积/mm×mm 48.9×65.2 单像元有效面积H×W/μm×μm 9×9 -
[1] SCOTT R H, GREGORY S M.High sensitivity 25 and 50 pitch microcantilever IR imaging arrays[J].SPIE, 2007, 6542:65421F-7. http://adsabs.harvard.edu/abs/2007SPIE.6542E..1FH [2] KWON W, JONG E, CHI H.A high fill-factor uncooled infrared detector with thermo-mechanical bimaterial structure[J].SPIE, 2007, 6542:65421O-8. http://adsabs.harvard.edu/abs/2007SPIE.6542E..1OK [3] ZHAO J.High Sensitivity Photomechanical MW-LWIR imaging using an uncooled MEMS microcantilever array and optical readout[J].SPIE, 2005, 5783:506-514. doi: 10.1117/12.606485 [4] TORUN H, UREY H.Uncooled thermo-mechanical detector array with optical readout[J].SPIE, 2005, 5957:59570O-8. https://www.researchgate.net/publication/225996132_Uncooled_thermo-mechanical_detector_array_with_optical_readout [5] ODEN P I, DATSKOS P G, THUNDAT T, et al.Uncooled thermal imaging using a piezoresistive microcantilever[J].Applied Physics Letters, 1996, 69(21):18. https://www.researchgate.net/publication/224435664_Uncooled_thermal_imaging_using_a_piezoresistive_microcantilever [6] 杨广立, 冯飞, 熊斌, 等.微机械光读出红外成像阵列器件机械特性对其性能的影响[J].光学精密工程, 2007, 15(5):699-705. http://d.wanfangdata.com.cn/Periodical/gxjmgc200705013YANG G L, FENG F, XIONG B, et al.Effect of mechanical characteristic of an micro-mechanical optically readable infrared imaging array device on its performance[J].Opt.Precision Eng., 2007, 15(5):699-705.(in Chinese) http://d.wanfangdata.com.cn/Periodical/gxjmgc200705013 [7] GONG C, ZHAO Y, DONG L Q, et al.All-optical background subtraction readout method for bimaterial cantilever array sensing[J].Optics Express, 2015, 23(16):20576-205811. doi: 10.1364/OE.23.020576 [8] FENG Y, ZHAO Y J, LIU M, et al.Image quality improvement by the structured light illumination method in an optical readout cantilever array infrared imaging system[J].Optics Letters, 2015, 8(6):1390-1393. https://www.researchgate.net/profile/Ming_Liu81/publication/274400194_Image_quality_improvement_by_the_structured_light_illumination_method_in_an_optical_readout_cantilever_array_infrared_imaging_system/links/575523af08ae02ac12811b23.pdf?origin=publication_detail [9] 张志刚, 毛亮, 程腾, 等.利用消杂散光的偏振光技术提高光学读出红外成像检测灵敏度[J].红外与毫米波学报, 2013, 32(4):331-336. doi: 10.3724/SP.J.1010.2013.00331ZHANG ZH G, MAO L, CHENG T, et al.A technology for eliminating stray light optical readout of FPA[J].Infrared Millim.Waves, 2013, 32(4):331-336.(in Chinese) doi: 10.3724/SP.J.1010.2013.00331 [10] KONG Y M, LIU R W, JIAO B B, et al.The thermal-mechanical performance of the uncooled infrared optical-readout bi-material FPA[J].Microsystem Technologies, 2015, 7(21):1495-1500. http://dl.acm.org/citation.cfm?id=2792915 [11] WANG M, TAKASHIRO T, TANAKA S.Infrared thermal detector array using Eu(TTA)3-based temperature sensitive paint for optical readable thermal imaging device[J].J.Micromechanics and Microengineering, 2015, 20(9):035012. http://adsabs.harvard.edu/abs/2015JMiMi..25c5012W [12] 刘明.微悬臂梁焦平面阵列光学读出技术研究[D].北京:北京理工大学, 2008.LIU M.Optical readout of micro-cantilever focal plane array[D].Beijing:Graduate Beijing Institute of Technology, 2008.(in Chinese) [13] LAI J, PERAZZO T, SHI Z, et al.Optimization and performance of high-resolution micro-optomechanical thermal sensors[J].Sensors and Actuators A, 1997, 58:113-119. doi: 10.1016/S0924-4247(96)01401-X [14] 徐乐, 张春雷, 代雷, 等.高精度非回转对称非球面加工方法研究[J].中国光学, 2016, 9(3):364-370. doi: 10.3788/co.XU L, ZHANG CH L, DAI L, et al.Research on manufacturing method of non-rotationally symmetrical aspheric surface with high accuracy[J].Chinese Optics, 2016, 9(3):364-370.(in Chinese) doi: 10.3788/co. [15] GARRARD K, DOW T, SOHN A, et al.Design tools for freeform optics[J].SPIE, 2005, 5784:587410-587411. http://www.researchgate.net/profile/Kenneth_Garrard/publication/228664045_Design_tools_for_freeform_optics/links/543c7d4d0cf20af5cfbf633b.pdf?origin=publication_detail [16] JIANG X, SCOTT P, WHITEHOUSE D.Freeform surface characterization-a fresh sreategy[J].CIRP Annals-Manufacturing Technology, 2007, 56(1):553-556. doi: 10.1016/j.cirp.2007.05.132 [17] ROGERS J R.A comparison of anamorphic, keystone, and Zernike surface types for aberration correction[J].SPIE, 2010, 7652:76520B-76528B. https://www.researchgate.net/publication/228910543_A_Comparison_of_Anamorphic_Keystone_and_Zernike_Surface_Types_for_Aberration_Correction [18] 程德文.自由曲面光学系统设计方法及其在头盔显示技术中的应用研究[D].北京:北京理工大学, 2011.CHENG D W.Study on design methods of free-form imaging systems and their application in head-mounted displays[D].Beijing:Graduate Beijing Institute of Technology, 2011.(in Chinese) [19] 王之江.光学设计手册[M].北京:机械工业出版社, 1994.WANG ZH J.Optical Design Manual[M].Beijing:China Machine Press, 1994.(in Chinese)