-
摘要: 为满足星间 通信对高隔离水平光学天线的要求,实现对光学天线隔离度的仿真分析和优化,提出了一种将红外系统冷反射的特征控制量YNI值作为衡量光学元件表面后向反射能量强度,并控制光学天线优化以提高隔离度水平的方法。在LightTools软件中为某 通信终端的卡塞格林天线创建了实体模型,通过仿真分析得出了各元件表面的后向反射率。在ZEMAX软件中以增大各元件表面的YNI值为目标优化天线结构。对比优化前后的结果,系统的后向反射率从3.068 8×10-4减小到1.075 5×10-5,隔离度从-35.13 dB减小到-49.68 dB。优化后的卡塞格林天线具备较高的隔离度水平,可用于星间 通信。Abstract: To meet the requirement of inter-satellites laser communication for higher isolation level of optical antenna and achieve the simulation analysis and optimization of optical antenna's isolation level, a method using the YNI value (characteristic value of narcissus in infrared optical system) as the evaluation of back-reflection energy intensity of optical element surfaces and increasing the isolation level of optical antenna by controlling its optimization is presented. An entity model of Cassegrain antenna in an inter-satellites laser communication terminal is established by LightTools software, and back-reflection ratio of each element surface is obtained through simulation and analysis. Optical antenna's structure is optimized by increasing the YNI value of each element surface by ZEMAX software. Comparing the results before and after optimization, the optical antenna's back-reflection ratio decreases from 3.068 8×10-4 to 1.075 5×10-5 and the isolation level decreases from -35.13 dB to -49.68 dB. The optimized Cassegrain antenna has a high isolation level, which can be used for inter-satellites laser communication.
-
Key words:
- laser communication /
- isolation /
- back-reflection /
- YNI value
-
表 1 卡塞格林天线的设计指标
Table 1. Design specifications of Cassegrain antenna
指标参数 参数值 波长/nm 1 550,1 530(发射和接收的信号光)
810,830(发射和接收的信标光)视场/mrad 0.25(信号光)
4(信标光)放大倍率 12.5 透过率 ≥0.75 口径/mm 250 表 2 各元件的后向反射率及YNI值
Table 2. Back-reflection ratio and YNI value of each element
表面 透过率与反
射率之比/%后向反射
率RYNI 透镜3后表面 98.75 1.687 5×10-7 -2.076 84 透镜3前表面 98.75 5.472 4×10-8 3.682 68 透镜2后表面 99.80 9.488 1×10-9 3.517 04 透镜2前表面 99.80 3.316 5×10-7 0.584 13 透镜1后表面 98.75 2.694 5×10-4 0.051 99 透镜1前表面 98.75 3.378 9×10-5 0.138 37 次镜 98.00 3.071 9×10-6 -4.031 07 主镜 98.00 0 -25.000 00 支撑结构 - 0 - 各级遮光罩 - 0 - 表 3 优化后各元件的后向反射率及YNI值
Table 3. Back-reflection ratio and YNI value of eachelement after optimization
表面 透过率与反
射率之比/%后向反射
率RYNI值 透镜3后表面 98.75 7.275 0×10-7 -1.000 28 透镜3前表面 98.75 4.134 8×10-8 4.070 96 透镜2后表面 99.80 6.831 9×10-9 3.962 30 透镜2前表面 99.80 3.026 4×10-8 1.893 74 透镜1后表面 98.75 2.672 7×10-6 0.500 21 透镜1前表面 98.75 4.124 9×10-6 0.525 68 次镜 98.00 3.152 0×10-6 -4.031 07 主镜 98.00 0 -25.000 00 支撑结构 - 0 - 各级遮光罩 - 0 - -
[1] 吴从均. 星间 通信终端及其实验室检测平台光学系统研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2014.WU C J. Study of inter-satellites laser communication terminals and its laboratory testing platform's optical system[D]. Changchun:Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2014. (in Chinese) [2] 程彦彦. 星载 通信终端光学系统研究[D]. 西安: 中国科学院西安光学精密机械研究所, 2012.CHENG Y Y. Research on space laser communication optical system[D]. Xi'an:Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2012. (in Chinese) [3] HONG J, KOH H S. Backward reflection analysis of transmitting channel of active laser ranging optics[J]. SPIE, 2013:88410Q. doi: 10.1117/12.2024033 [4] 胥全春. 星地 通信星上终端杂散光分析及抑制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.XU Q CH. Research and analysis on stray light and suppression methods of satellite terminal in satellite-to-ground laser communications[D]. Harbin:Harbin Institute of Technology, 2014. (in Chinese) [5] 金光, 李艳杰, 钟兴, 等.空间成像与 通信共口径光学系统设计[J].光学精密工程, 2014, 22(8):2067-2074. http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201408013.htmJIN G, LI Y J, ZHONG X, et al.. Design of co-aperture optical system for space imaging and laser communication[J]. Optics and Precision Engineering, 2014, 22(8):2067-2074. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201408013.htm [6] SODNIK Z, SMIT H, SANS M, et al.. LLCD operations using the lunar lasercom OGS terminal[J]. SPIE, 2014:89710W. https://www.researchgate.net/publication/263055317_LLCD_operations_using_the_Lunar_Lasercom_OGS_terminal [7] 姜会林. HTSS空间 通信技术与系统[M].北京:国防工业出版社, 2010.JIANG H L. The technologies and systems of space laser communication[M]. Beijing:National Defense Industry Press, 2010. (in Chinese) [8] 吴从均, 颜昌翔, 高志良.空间 通信发展概述[J].中国光学, 2013, 6(5):670-680. //www.illord.com/CN/abstract/abstract9051.shtmlWU C J, YAN CH X, GAO ZH L. Overview of space laser communications[J]. Chinese Optics, 2013, 6(5):670-680. (in Chinese) //www.illord.com/CN/abstract/abstract9051.shtml [9] 姜会林, 安岩, 张雅琳, 等.空间 通信现状, 发展趋势及关键技术分析[J].飞行器测控学报, 2015, 34(3):207-217. http://www.cnki.com.cn/Article/CJFDTOTAL-FXCK201503001.htmJIANG H L, AN Y, ZHANG Y L, et al.. Analysis of the status quo, development trend and key technologies of space laser communication[J]. Journal of Spacecraft TT&C Technology, 2015, 34(3):207-217. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-FXCK201503001.htm [10] BIRKL R A, MANHART S. Back-reflection measurements on the SILEX telescope[C]. Munich'91 (Lasers'91), International Society for Optics and Photonics, Munich, Germany, June 10, 1991. [11] 刘欣, 潘枝峰.红外光学系统冷反射分析和定量计算方法[J].红外与 工程, 2012, 41(7):1684-1688. http://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201207003.htmLIU X, PAN ZH F. Analysis and quantitative calculation methods for Narcissus of infrared optical system[J]. Infrared and Laser Engineering, 2012, 41(7):1684-1688. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201207003.htm [12] 刘涛, 崔庆丰, 杨亮亮, 等.红外光学系统中衍射面冷反射的分析与评价[J].科学通报, 2012, 57(1):36-41. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201201008.htmLIU T, CUI Q F, YANG L L, et al.. Evaluation and control of narcissus for diffractive surfaces in IR systems[J]. Chinese Science Bulletin, 2012, 57(1):36-41. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201201008.htm [13] 杨正, 屈恩世, 曹剑中, 等.对凝视红外热成像冷反射现象的研究[J]. 与红外, 2008(1):35-38. http://www.cnki.com.cn/Article/CJFDTOTAL-JGHW200801010.htmYANG ZH, QU E SH, CAO J ZH, et al.. The narcissus study in the optical system for the infrared staring arrays[J]. Laser & Infrared, 2008(1):35-38. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JGHW200801010.htm [14] HOWARD J W, ABEL I R. Narcissus:reflections on retroreflections in thermal imaging systems[J]. Applied Optics, 1982, 21(18):3393-3397. doi: 10.1364/AO.21.003393 [15] 张鹏, 罗长江, 熊钟秀.制冷型红外光学系统冷反射的逆光路分析[J].电光与控制, 2013, 20(6):66-69. http://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201306017.htmZHANG P, LUO CH J, XIONG ZH X. Analysis of inverse path tracing rays of narcissus for cooled infrared optical system[J]. Electronics Optics & Control, 2013, 20(6):66-69. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201306017.htm [16] 张葆, 崔恩坤, 洪永丰.红外双波段双视场共光路光学系统[J].光学精密工程, 2015, 23(2):395-401. http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201502011.htmZHANG B, CUI E K, HONG Y F. Infrared MWIR/LWIR dual-FOV common-path optical system[J]. Optics and Precision Engineering, 2015, 23(2):395-401. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201502011.htm