Control scheme of aerial photoelectrical stabilized platform based on pseudo-derivative and acceleration feedback
-
摘要:为了提高航空光电稳定平台的扰动隔离度,在传统平台的电流反馈、速度反馈、位置反馈的基础上增加了高增益加速度反馈,并利用伪微分反馈的控制技术设计出新的控制器来代替传统的速度反馈的PI控制器。实验结果表明,在模拟转台以1°、0~2.5 Hz的正弦干扰下,相对于传统的航空光电稳定平台,基于伪微分和加速度反馈控制的光电稳定平台的阶跃响应超调量减小了约7.8%,扰动隔离度提高了约8.7 dB;相对于基于PI控制器和加速度反馈控制的航空光电稳定平台,基于伪微分和加速度反馈控制的光电稳定平台的阶跃响应超调量减小了约2.6%,且平台的过渡过程加快。该控制系统能够有效地抑制扰动力矩的影响,具有较好的通用性和实用性。Abstract:In order to improve the disturbance isolation degree of aerial photoelectrical stabilized platform, a new controller is designed to replace the traditional PI controller. The new controller utilizes the pseudo-derivative feedback (PDF) control technology and high-gain acceleration feedback based on current feedback, speed feedback and position feedback on the traditional platform. When flight simulator is influenced by 1 degree, 0-2.5 Hz sinusoidal interference, compared with the traditional aerial photoelectrical stabilized platform, the step response overshoot of the platform based on PDF and acceleration feedback system decreases by about 7.8%, and the disturbance isolation degree increases by about 8.7 dB. Besides, compared with the aerial photoelectrical stabilized platform based on PI controller and acceleration feedback control system, the step response overshoot of the platform based on PDF and acceleration feedback system can reduce by about 2.6%, and the transition process of the platform is faster. The control system can effectively restrain the influence from disturbance torque, and this makes the system more common and useful.
-
表 1基于PDF和加速度反馈控制系统相对于传统速度反馈系统扰动隔离度的提高程度
Table 1.Improvement of disturbance isolation degree of the control system based on PDF and acceleration feedback relative to the traditional speed feedback system
Disturbance
frequency/HzImprovement of disturbance
isolation degree/dB0.1 13.61 0.5 12.83 1.0 11.27 1.5 9.91 2.0 8.70 2.5 10.15 表 2基于PDF的加速度反馈控制系统扰动隔离度的提高程度(相对于基于PI)
Table 2.Improvement of disturbance isolation degree based on PDF relative to PI-based acceleration feedback control system
Disturbance
frequency/HzImprovement of disturbance
isolation degree/dB0.1 4.24 0.5 3.72 1.0 3.98 1.5 3.84 2.0 3.63 2.5 4.16 -
[1] 刘长顺, 王兵, 陈兆兵.车载光电稳定平台外框架优化设计[J].中国光学, 2011, 4(6):606-609.//www.illord.com/CN/abstract/abstract8751.shtmlLIU CH SH, WANG B, CHEN ZH B. Optimization design of external border for vehicleopto-electronic stabilized platform[J]. Chinese Optics, 2011, 4(6):606-609. (in Chinese)//www.illord.com/CN/abstract/abstract8751.shtml [2] 刘仲宇, 张涛, 王平, 等.红外导引头稳定平台主框架拓朴优化设计[J].红外与 工程, 2016, 45(2):218001.http://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201602034.htmLIU ZH Y, ZANG T, WANG P, et al.. Topology optimization design for main frame of infrared seeker's stabilization platform[J]. Infrared and Laser Engineering, 2016, 45(2):218001. (in Chinese)http://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201602034.htm [3] 官庆, 肖胜, 邱海华.捷联式光电稳定平台的建模与控制[J].光学与光电技术, 2015, 13(5):64-70.http://www.cnki.com.cn/Article/CJFDTOTAL-GXGD201505014.htmGUAN Q, XIAO SH, QIU H H. Modeling and control of strapdown photoelectric stabilized platform[J]. Optics & Optoelectronic Technology, 2015, 13(5):64-70. (in Chinese)http://www.cnki.com.cn/Article/CJFDTOTAL-GXGD201505014.htm [4] 刘廷霞, 王伟国, 陈健.车载惯性平台稳定位置解算算法[J].中国光学, 2012, 5(5):537-543.//www.illord.com/CN/abstract/abstract8889.shtmlKIU Y X, WANG W G, CHEN J. Position arithmetic for a vehicular inertial stabilized platform[J]. Chinese Optics, 2012, 5(5):537-543. (in Chinese)//www.illord.com/CN/abstract/abstract8889.shtml [5] 丁策, 戴明, 李嘉全, 等.光电陀螺稳定平台的分数阶控制[J].光学精密工程, 2014, 22(2):383-389.http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201402020.htmDING C, DAI M, LI J Q, et al.. Fractional control of stabilized platform for photoelectric gyro[J]. Optics and Precision Engineering, 2014, 22(2):383-389. (in Chinese)http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201402020.htm [6] 李贤涛, 张葆, 赵春蕾, 等.基于自适应的自抗扰控制技术提高扰动隔离度[J].吉林大学学报(工学版), 2015(1):202-208.http://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201501030.htmLI X T, ZH B, ZH CH L, et al.. Improve isolation degree based on adaptive active disturbance rejection controller[J]. Journal of Jilin University (Engineering and Technology Edition), 2015(1):202-208. (in Chinese)http://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201501030.htm [7] 刘攀, 邱海华.并联型光电设备稳定平台运动控制研究[J].光学与光电技术, 2013, 11(4):55-59.http://www.cnki.com.cn/Article/CJFDTOTAL-GXGD201304012.htmLIU P, QIU H H. Research on the motion control of the stabilized platform of the parallel type photoelectric equipment[J]. Optics & Optoelectronic Technology, 2013, 11(4):55-59. (in Chinese)http://www.cnki.com.cn/Article/CJFDTOTAL-GXGD201304012.htm [8] 李贤涛, 张葆, 孙敬辉, 等.航空光电稳定平台扰动频率自适应的自抗扰控制[J].红外与 工程, 2014, 43(5):1574-1581.http://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201405040.htmLI X T, ZH B, S J H, et al.. ADRC based on disturbance frequency adaptive of aerial photoelectrical stabilized platform[J]. Infrared and Laser Engineering, 2014, 43(5):1574-1581. (in Chinese)http://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201405040.htm [9] 宋彦, 高慧斌, 张淑梅, 等.直流力矩电机力矩波动的自适应补偿控制[J].光学精密工程, 2010, 18(10):2212-2220.http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201010015.htmSONG Y, GAO H B, ZHANG SH M, et al.. Adaptive compensation of torque ripple in DC torque motor[J]. Optics and Precision Engineering, 2010, 18(10):2212-2220. (in Chinese)http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201010015.htm [10] 李贤涛, 张葆, 沈宏海.基于自抗扰控制技术提高航空光电稳定平台的扰动隔离度[J].光学精密工程, 2014, 22(8):2223-2231.http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201408033.htmLI X T, ZHANG B, SH H H. Improvement of isolation degree of aerial photoelectrical stabilized platform based on ADRC[J]. Optics and Precision Engineering, 2014, 22(8):2223-2231. (in Chinese)http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201408033.htm [11] 黄永梅, 张桐, 马佳光, 等.高精度跟踪控制系统中电流环控制技术研究[J].光电工程, 2005, 32(1):16-19.http://www.cnki.com.cn/Article/CJFDTOTAL-GDGC200501004.htmHUANG Y M, ZHANG T, MA J G, et al.. Study on the control of a current loop in a high-accuracy tracking and control system[J]. Opto-Electronic Engineering, 2005, 32(1):16-19. (in Chinese)http://www.cnki.com.cn/Article/CJFDTOTAL-GDGC200501004.htm [12] DE JAGER B. Acceleration assisted tracking control[J]. IEEE Control Systems, 1994, 14(5):20-27.doi:10.1109/37.320883 [13] ZHU W H, TRYGGVASON B, PIEDBOEUF J C. On active acceleration control of vibration isolation systems[J]. Control Engineering Practice, 2006, 14(8):863-873.doi:10.1016/j.conengprac.2005.04.016 [14] 孙辉.机载光电平台目标定位与误差分析[J].中国光学, 2013, 6(6):912-918.//www.illord.com/CN/abstract/abstract8991.shtmlSUN H. Target localizationand error analysis for airborne electro-optical platform[J]. Chinese Optics, 2013, 6(6):912-918. (in Chinese)//www.illord.com/CN/abstract/abstract8991.shtml [15] 魏伟, 戴明, 李嘉全, 等.航空光电稳定平台的自抗扰控制系统[J].光学精密工程, 2015, 23(8):2296-2305.http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201508024.htmWEI W, DAI M, LI J Q, et al.. ADRC control system for airborne opto-electronic platform[J]. Optics and Precision Engineering, 2015, 23(8):2296-2305. (in Chinese)http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201508024.htm