High-speed 850 nm vertical-cavity surface-emitting lasers with BCB planarization technique
doi:10.3788/CO.20181102.0190
-
摘要:垂直腔面发射 器因其具有低阈值、低功耗、可实现高速调制等优势,广泛地应用于光通信和光互连等领域。寄生电容是影响 器的调制带宽的主要因素之一。本文通过采用低 k值的苯并环丁烯(BCB)平整技术有效地降低了垂直腔面发射 器的寄生电容。详细研究了BCB平整技术的最优工艺参数,为未来高速垂直腔面发射 器的制造技术提供参考。低 k值BCB平整垂直腔面发射 器在7 μm氧化孔径下3 dB小信号调制带宽可达15.2 GHz。Abstract:Vertical-cavity surface-emitting lasers(VCSELs) are widely used in short-reached optical interconnects and data communication links because of their low energy consumption and high modulation speed. Capacitance, as the parasitic parameters, affects the modulation bandwidth. In this paper, parasitic capacitance of VCSELs is reduced by using a low- kbenzocyclobutene(BCB) planarization technique. The detail BCB planarization technique has been discussed with optimal process parameters, which is useful for high-speed VCSEL fabrication. The small signal modulation bandwidth of the low- kBCB planarization VCSEL with 7 μm oxide aperture has been achieved to 15.2 GHz.
-
Figure 1.(a) Simulation results of small signal modulation response for VCSELs with BCB and SiO2passivation. The parasitic cutoff frequency can reach to 17.8 GHz and 10.6 GHz for BCB and SiO2-passivated VCSEL, respectively. (b)The measured small signal modulation response for VCSELs with BCB and SiO2passivation. The -3dB bandwidth is 15.2 GHz and 9.85 GHz with the oxide aperture of 7 μm@6 mA, respectively, which indicates the parasitic capacitance limits the modulation frequency of the devices
Figure 6.(a) Plot of the resonance frequency for the VCSELs with 5 μm and 7 μm oxide aperture versus the square root of the current injection above the threshold current at room temperature. (b)Damping rate versus resonance frequency square for the VCSELs with 5 μm and 7 μm oxide aperture at room temperature
-
[1] 海一娜, 邹永刚, 田锟, 等.水平腔面发射半导体 器研究进展[J].中国光学, 2017, 10(2):194-206.//www.illord.com/CN/abstract/abstract9460.shtmlHAI Y N, ZOU Y G, TIAN K,et al. Research progress of horizontal cavity surface emitting semiconductor lasers[J].Chinese Optics, 2017, 10(2):194-206.//www.illord.com/CN/abstract/abstract9460.shtml [2] 黄海华, 刘云, 杨晔, 等.850 nm锥形半导体 器的温度特性[J].中国光学, 2013, 6(2):201-207.//www.illord.com/CN/abstract/abstract8898.shtmlHAI H H, LIU Y, YANG Y,et al. Temperature characteristics of 850 nm tapered semiconductor lasers[J].Chinese Optics, 2013, 6(2):201-207.//www.illord.com/CN/abstract/abstract8898.shtml [3] 戚晓东, 叶淑娟, 张楠, 等.面发射分布反馈半导体 器及光栅耦合半导体 器[J].中国光学, 2010, 3(5):415-431.//www.illord.com/CN/abstract/abstract8520.shtmlQI X D, YE SH J, ZHANG N,et al. Surface-emitting distributed-feedback semiconductor lasers and grating-coupled laser diodes[J].Chinese Optics, 2010, 3(5):415-431.//www.illord.com/CN/abstract/abstract8520.shtml [4] WESTBERGH P, GUSTAVSSON J S, HAGLUND A,et al.. High-speed, low-current-density 850 nm VCSELs[J].IEEE J. Sel. Topics Quantum Electron., 2009, 15(3):694-703.doi:10.1109/JSTQE.2009.2015465 [5] WESTBERGH P, GUSTAVSSON J S, KO? GEL B,et al.. Impact of photon lifetime on high-speed VCSEL performance[J].IEEE J. Sel. Topics Quantum Electron., 2011, 17(6):1603-1613.doi:10.1109/JSTQE.2011.2114642 [6] LARISCH G, MOSER P, LOTT J A,et al.. Impact of photon lifetime on the temperature stability of 50 Gb/s 980 nm VCSELs[J].IEEE Photon. Technol. Lett., 2016, 28(21):2327-2330.doi:10.1109/LPT.2016.2592985 [7] HAGLUND E, WESTBERGH P, GUSTAVSSON J S,et al.. High-speed VCSELs with strong confinement of optical fields and carriers[J].J. Lightwave Technol., 2016, 34(2):269-277.doi:10.1109/JLT.2015.2458935 [8] MOSER P, LOTT J A, BIMBERG D. Energy efficiency of directly modulated oxide-confined high bit rate 850-nm VCSELs for optical interconnects[J].IEEE J. Sel. Topics Quantum Electron., 2013, 19(4):1702212-1702212.doi:10.1109/JSTQE.2013.2255266 [9] WESTBERGH P, SAFAISINI R, HAGLUND E,et al.. High-speed oxide confined 850-nm VCSELs operating error-free at 40 Gb/s up to 85℃[J].IEEE Photon. Technol. Lett., 2013, 25(8):768-771.doi:10.1109/LPT.2013.2250946 [10] LUCOVSKY G, RAYNER JR G B. Microscopic model for enhanced dielectric constants in low concentration SiO2-rich noncrystalline Zr and Hf silicate alloys[J].Appl. Phys. Lett., 2000, 77(18):2912-2914.doi:10.1063/1.1320860 [11] OU Y, GUSTAVSSON J S, WESTBERGH P,et al.. Impedance characteristics and parasitic speed limitations of high-speed 850-nm VCSELs[J].IEEE Photon. Technol. Lett., 2009, 21(24):1840-1842.doi:10.1109/LPT.2009.2034618 [12] CHANG Y C, COLDREN L A. Efficient, high-data-rate, tapered oxide-aperture vertical-cavity surface-emitting lasers[J].IEEE J. Sel. Topics Quantum Electron., 2009, 15(3):704-715.doi:10.1109/JSTQE.2008.2010955 [13] LI H, LOTT J A, WOLF P,et al.. Temperature-dependent impedance characteristics of temperature-stable high-speed 980-nm VCSELs[J].IEEE Photon. Technol. Lett., 2015, 27(8):832-835.doi:10.1109/LPT.2015.2393863 [14] COLDREN L A, CORZINE S W, MASHANOVITCH M L.Diode Lasers and Photonic Integrated Circuits[M]. New Jersey, MD:John Wiley & Sons, 2012. [15] LI H, WOLF P, MOSER P,et al.. Impact of the quantum well gain-to-cavity etalon wavelength offset on the high temperature performance of high bit rate 980-nm VCSELs[J].IEEE J. Quantum Electron., 2014, 50(8):613-621.doi:10.1109/JQE.2014.2330255 [16] MOSER P, LOTT J A, LARISCH G,et al.. Impact of the oxide-aperture diameter on the energy efficiency, bandwidth, and temperature stability of 980-nm VCSELs[J].J. Lightwave Technol., 2015, 33(4):825-831.doi:10.1109/JLT.2014.2365237 [17] LARSSON A, WESTBERGH P, GUSTAVSSON J,et al.. High-speed VCSELs for short reach communication[J].Semicond. Sci. Technol., 2010, 26(1):014017.http://www.researchgate.net/publication/230988183_High-speed_VCSELs_for_short_reach_communication?ev=prf_cit [18] HAGLUND E P, KUMARI S, WESTBERGH P,et al.. 20-Gb/s modulation of silicon-integrated short-wavelength hybrid-cavity VCSELs[J].IEEE Photon. Technol. Lett., 2016, 28(8):856-859.doi:10.1109/LPT.2016.2514699 [19] HAGLUND E P, WESTBERGH P, GUSTAVSSON J S,et al.. Impact of damping on high-speed large signal VCSEL dynamics[J].J. Lightwave Technol, 2015, 33(4):795-801.doi:10.1109/JLT.2014.2364455