Finite element analysis of infrared thermal imaging for four-layers structure of human thigh
doi:10.3788/CO.20181102.0237
-
摘要:为研究人体红外热成像和体内肿瘤热源的关联,本文构建了包括骨层、肌肉层、脂肪层、皮肤层的人体腿部有限元模型。根据体内温度沿径向分布的特点,给出了各区域内动脉血液灌注热生成率随径向坐标变化的情况,解决了有限元建模中动脉血灌注热生成率随温度变化的非线性问题。进而用有限元方法数值计算了不同尺寸和不同深度的体内肿瘤所带来的温度变化。结果表明:在所研究的肿瘤尺寸范围内,肿瘤尺寸越小,体内温度提升越高,体表的峰值温度越高,体表温度分布半峰宽越窄,温度变化越陡峭。对于特定尺寸的肿瘤,肿瘤越深,体内峰值温度越高,体表的峰值温度越低,体表温度分布半峰宽越宽,温度变化越平缓。Abstract:To investigate the relevancy of infrared thermal imaging and tumors inside human body, the finite element model of human thigh with four-layers, including bone, muscle, fat and skin layers, is established in this paper. Based on the characteristic that temperature varies along radial direction inside the body, the heat generation rate of blood perfusion as a function of polar radius in each layer is given. By this method the nonlinear problem of temperature-dependence of the heat generation rate of blood perfusion in finite element analysis is solved. Then the temperature distributions caused by the inside tumor with different sizes and at different depths are numerically calculated by finite element analysis. It can be concluded that in the given range of tumor diameters a smaller tumor yields larger temperature increases inside the body, higher peak temperature and narrower FWHM(Full Width at Half Maximum) of the temperature distribution on the skin surface. It is also shown that with specific diameter, tumors located deeper yield higher peak temperature inside the body, and lower peak temperature and wider FWHM on the skin surface.
-
Table 1.Thicknesses and thermophysical parameters of tissues
skin fat muscle bone blood Conductivity (W/m·℃) 0.47 0.21 0.51 0.75 tissue density(kg/m3) 1 085 920 1 085 1 357 1 059 specific heat(J/kg·℃) 3 680 2 300 3 800 1 700 3 850 Thickness/cm 0.2 0.6 2.7 2.5 metabolic heat generate/(W·m-3) 368 368 684 368 blood perfusion rate(mL/s·m3) 180 180 540 0 Table 2.Doubling time and metabolic heat generation rate of tumor with different radius
r/cm 0.50 0.52 0.55 0.60 0.70 τ/day 50 68 95 135 208 Qm/(W·m-3) 65 400 47 822 34 544 24 144 15 746 Table 3.Typical data of the temperature distributions inFig. 5(a)
r/cm Tmax/℃ Tmin/℃ T0.5/℃ FWHM/cm 0.50 32.98 32.66 32.82 4.28 0.52 32.92 32.66 32.79 4.29 0.55 32.86 32.65 32.76 4.31 0.6 32.82 32.65 32.74 4.32 0.7 32.80 32.64 32.72 4.40 Table 4.Typical data of the temperature distribution curves inFig. 7(a)
h/cm Tmax/℃ Tmin/℃ T0.5/℃ FWHM/cm 1.4 33.02 32.66 32.84 4.05 1.5 32.99 32.66 32.83 4.26 1.6 32.96 32.67 32.82 4.47 1.7 32.94 32.67 32.81 4.68 1.8 32.91 32.67 32.79 4.89 1.9 32.89 32.67 32.78 5.09 2.0 32.88 32.67 32.78 5.31 2.1 32.86 32.67 32.77 5.54 2.2 32.85 32.67 32.76 5.76 -
[1] BEZERRA L A, OLIVEIRA M M, ROLIM T L, et al.. Estimation of breast tumor thermal properties using infrared images[J].Signal Processing, 2013, 93(10):2851-2863.doi:10.1016/j.sigpro.2012.06.002 [2] SILVA L F, SANTOS A A S M D, BRAVO R S, et al.. Hybrid analysis for indicating patients with breast cancer using temperature time series[J].Computer Methods&Programs in Biomedicine, 2016, 130:142-153.https://www.sciencedirect.com/science/article/pii/S1359431114006504 [3] SHI G L, HAN F, LIANG C W, et al.. A novel method of thermal tomography tumor diagnosis and its clinical practice[J].Applied Thermal Engineering, 2014, 73(1):408-415.doi:10.1016/j.applthermaleng.2014.07.074 [4] ETEHADTAVAKOL M, NG E Y K. Breast thermography as a potential non-contact method in the early detection of cancer:a review[J].Journal of Mechanics in Medicine&Biology, 2013, 13(2):309-107.https://www.researchgate.net/profile/Eddie_Ng2/publication/263800453_Breast_thermography_as_a_potential_non-contact_method_in_the_early_detection_of_cancer_A_review/links/55dd021a08ae591b309abe56.pdf?origin=publication_detail [5] XIAO J, HE Z Z, YANG Y, et al.. Investigation on three-dimensional temperature field of human knee considering anatomical structure[J].International Journal of Heat&Mass Transfer, 2011, 54(9-10):1851-1860.https://www.researchgate.net/publication/229370371_Investigation_on_three-dimensional_temperature_field_of_human_knee_considering_anatomical_structure [6] GIUSEPPE C, DANILO E, SUKHOON O, et al.. An approach to rapid calculation of temperature change in tissue using spatial filters to approximate effects of thermal conduction[J].IEEE Trans. Biomed Eng., 2013, 60(6):1735-1741.doi:10.1109/TBME.2013.2241764 [7] MICHEL A P M, SABBIR L, KEVIN B, et al.. In vivo measurement of mid-infrared light scattering from human skin[J].Biomedical Optics Express, 2013, 4(4):520-530.doi:10.1364/BOE.4.000520 [8] BORCHARTT T B, CONCI A, LIMA R C F, et al.. Breast thermography from an image processing viewpoint:a survey[J].Signal Processing, 2013, 93(10):2785-2803.doi:10.1016/j.sigpro.2012.08.012 [9] KENNEDY D A, LEE T, SEELY D. A comparative review of thermography as a breast cancer screening technique[J].Integrative Cancer Therapies, 2009; 8(1):9-16.doi:10.1177/1534735408326171 [10] NG Y K. A review of thermography as promising non-invasive detection modality for breast tumor[J].International Journal of Thermal Sciences, 2009, 48(5):849-859.doi:10.1016/j.ijthermalsci.2008.06.015 [11] PENNES H H. Analysis of tissue and arterial blood temperatures in the resting human forearm[J].Journal of Applied Physiology, 1948, 1(2):93-122.doi:10.1152/jappl.1948.1.2.93 [12] BHOWMIK A, REPAKA R. Estimation of growth features and thermophysical properties of melanoma within 3-D human skin using genetic algorithm and simulated annealing[J].International Journal of Heat&Mass Transfer, 2016, 98:81-95.https://www.researchgate.net/publication/299266384_Estimation_of_growth_features_and_thermophysical_properties_of_melanoma_within_3-D_human_skin_using_genetic_algorithm_and_simulated_annealing [13] DAS K, MISHRA S C. Estimation of tumor characteristics in a breast tissue with known skin surface temperature[J].Journal of Thermal Biology, 2013, 38(6):311-317.doi:10.1016/j.jtherbio.2013.04.001 [14] FERREIRA M S, YANAGIHARA J I. A transient three-dimensional heat transfer model of the human body[J].International Communications in Heat&Mass Transfer, 2009, 36(7):718-724.https://www.sciencedirect.com/science/article/pii/S0735193309000773 [15] ADLAKHA K R P. Coaxial circular sector elements to study two-dimensional heat distribution problem in dermal regions of human limbs[J].Mathematical&Computer Modelling, 1995, 22(9):127-140.https://www.sciencedirect.com/science/article/pii/089571779500173Y [16] AGRAWAL M, PARDASANI K R. Finite element model to study temperature distribution in skin and deep tissues of human limbs[J].Journal of Thermal Biology, 2016, 62(SI):98-105.https://www.sciencedirect.com/science/article/pii/S0306456516300675 [17] HATWAR R, HERMAN C. Inverse method for quantitative characterization of breast tumors from surface temperature data[J].International Journal of Hyperthermia, 2017, 33(7):741-757.http://europepmc.org/abstract/MED/28540793 [18] WANG C Y, SUN B, CHEN L, et al.. Thermal imaging research on relationship between the parameters of the inner abnormal heat source and surface temperature distribution[J].Laser&Infrared, 2012, 42(1):31-35.https://www.researchgate.net/publication/6523009_A_Novel_Approach_of_Analyzing_the_Relation_between_the_Inner_Heat_Source_and_the_Surface_Temperature_Distribution_in_Thermal_Texture_Maps [19] YANG H Q, LIN Q Y, ZHEN Y E, et al.. Finite element analysis for temperature distribution of normal breast[J].Acta Laser Biology Sinica, 2007, 16(4):424-427.https://www.researchgate.net/publication/241151840_Finite_Element_Analysis_for_Temperature_Distribution_of_Breast [20] KHANDAY M A. Numerical study of partial differential equations to estimate thermoregulation in human dermal regions for temperature dependent thermal conductivity[J].Journal of the Egyptian Mathematical Society, 2014, 22(1):152-155.doi:10.1016/j.joems.2013.05.006 [21] MITRA S, BALAJI C. A neural network based estimation of tumor parameters from a breast thermogram[J].International Journal of Heat&Mass Transfer, 2010, 53(21-22):4714-4727.https://www.sciencedirect.com/science/article/pii/S0017931010003340 [22] NG E Y, SUDHARSAN N M. An improved three-dimensional direct numerical modelling and thermal analysis of a female breast with tumour[J].Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine, 2001, 215(1):25-37.doi:10.1243/0954411011533508 [23] CHANMUGAM A, HATWAR R, HERMAN C. Thermal analysis of cancerous breast model[J].International Mechanical Engineering Congress and Exposition, 2012, 2:134-143.https://jhu.pure.elsevier.com/en/publications/thermal-analysis-of-cancerous-breast-model-4