留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于 的测量技术在燃烧流场诊断中的应用

刘晶儒,胡志云

downloadPDF
刘晶儒, 胡志云. 基于 的测量技术在燃烧流场诊断中的应用[J]. , 2018, 11(4): 531-549. doi: 10.3788/CO.20181104.0531
引用本文: 刘晶儒, 胡志云. 基于 的测量技术在燃烧流场诊断中的应用[J]. , 2018, 11(4): 531-549.doi:10.3788/CO.20181104.0531
LIU Jing-ru, HU Zhi-yun. Applications of measurement techniques based on lasers in combustion flow field diagnostics[J]. Chinese Optics, 2018, 11(4): 531-549. doi: 10.3788/CO.20181104.0531
Citation: LIU Jing-ru, HU Zhi-yun. Applications of measurement techniques based on lasers in combustion flow field diagnostics[J].Chinese Optics, 2018, 11(4): 531-549.doi:10.3788/CO.20181104.0531

基于 的测量技术在燃烧流场诊断中的应用

doi:10.3788/CO.20181104.0531
基金项目:

国家自然科学基金资助项目91541203

详细信息
    作者简介:

    刘晶儒(1945-), 女, 辽宁沈阳人。研究员, 博导。1967年于哈尔滨工业大学光学仪器专业毕业。主要从事 技术及应用方面的研究。E-mail:liujingru@nint.ac.cn

    胡志云(1969—), 男, 河南浚县人, 高级工程师, 2013年于西北核技术研究所获得博士学位。主要从事燃烧流场 诊断技术及应用方面的研究。E-mail:huzhiyun@nint.ac.cn

  • 中图分类号:O433

Applications of measurement techniques based on lasers in combustion flow field diagnostics

Funds:

National Natural Science Foundation of China91541203

More Information
  • 摘要:分析了工业发动机湍流燃烧场诊断的需求和面临的挑战,介绍了燃烧流场组分浓度、温度和速度等主要参数的 测量技术,给出了其基本原理、在燃烧场诊断中的应用和国内外研究现状,分析了不同技术的特点及其适用性。简介了多参数综合诊断的作用和进展。对目前诊断和测量存在的主要问题和发展趋势进行了探讨。

  • 图 1测量的燃料与空气混合比的分布(曲线1为平均值, 曲线2为RMS值)[3]

    Figure 1.Experimental mean(curve 1) and RMS fluctuation(curve 2) mixture fraction data[3]

    图 2煤油燃烧场主要组分拉曼散射谱(左)及主要组分摩尔分数随时间变化(右)[6]

    Figure 2.Typical measured Raman spectrum(left) and mole fractions of the major species(right) in kerosene flame[6]

    图 3自由基OH的能级转移过程示意图

    Figure 3.Schematic diagram showing energy transfer processes in the OH radical

    图 4超燃冲压发动机燃烧室OH浓度分布图像[15]

    Figure 4.OH PLIF images for hydrogen injection at each of the equivalence ratios[15]

    图 5时间序列速度场测量结果[19]

    Figure 5.Sequence of instantaneous velocity field measurements[19]

    图 6时间序列OH-PLIF图像[19]

    Figure 6.Sequence of corrected PLIF images at flame[19]

    图 7在乙炔-氧气火焰中利用圆偏振泵浦光获取的C2偏振光谱。上部:两偏振片相互垂直; 底部:当检偏器略微偏离垂直位置时获得的色散线型[35]

    Figure 7.Polarization spectrum of C obtained in an acetylene-oxygen flame for circularly polarized pump beam.R-branch triplets are clearly resolved.Top:the two polarizers are crossed.Bottom:dispersive line profiles are obtained when the analyser is slightly opened from the crossed position.The vertical scale is the same for both panels

    图 8发动机模型燃烧室CARS测量现场布局照片

    Figure 8.Schematic setup for the temperature measurement of model combustor based on CARS

    图 9航空发动机模型燃烧室内部流场平均温度测量结果[46]

    Figure 9.Average temperature measurement results of a model aero-engine combustor[46]

    图 10超燃冲压发动机模型燃烧室出口流场温度随时间变化[49]

    Figure 10.Measured temperature versus time at the exit of scramjet engine

    图 11双线OH-PLIF用于发动机模型燃烧室温度场测量典型结果[61]

    Figure 11.Two-dimensional temperature distribution in a jet-engine model combustor segment as measured using two-line excitation of OH radicals[61]

    图 12高温超声速羽流单线HTV图像及速度分布结果[70]

    Figure 12.Single-line HTV images in supersonic plume[70]

    表 1几种标记分子

    Table 1.List of typical molecular tags

    Molecular tag Parent of the tags Tagging way
    Excited-state phosphor Phosphor Laser excitation
    OH H2O Photodissociation
    NO NO2/N2O/(N2+O2) Photodissociation/recombination
    Excited-state O2 O2 Raman excitation
    O3 O2 Photodissociation and recombination
    Excited-state N2 N2 Laser excitation
    下载: 导出CSV
  • [1] KOHSE-HÖINGHAUS K, JEFFRIES J B主编; 刘晶儒, 叶景峰, 陶波, 等译. 应用燃烧诊断学[M]. 北京: 国防工业出版社, 2017.

    KOHSE-HÖINGHAUS K, JEFFRIES J B.Applied Combustion Diagnostics[M]. Taylor & Francies, 2002.
    [2] 刘晶儒, 胡志云, 张振荣, 等. 光谱技术在燃烧流场诊断中的应用[J].光学 精密工程, 2011, 19(2):284-295.http://www.doc88.com/p-0999088798722.html

    LIU J R, HU ZH Y, ZHANG ZH R,et al.. Laser spectroscopy applied to combustion diagnostics[J].Opt. Precision Eng., 2011, 19(2):284-295.(in chinese)http://www.doc88.com/p-0999088798722.html
    [3] GRADY N R, FRANKLAND J H, PITZ R W. UV Raman Scattering Measurements of Supersonic Reacting Flow over a Piloted, Ramped Cavity[R]. AIAA, 2012: 0614.
    [4] WEDR L, MEIER W, KUTNE P,et al.. Single-pulse 1D laser Raman scattering applied in a gas turbine model combustor at elevated pressure[J].Proceedings of the Combustion Institute, 2007, 31:3099-3106.doi:10.1016/j.proci.2006.07.148
    [5] LOCKE R J. Temperature and species measurements of combustion produced by a 9-point lean direct injector[R]. AIAA, 2013: 0562.
    [6] 张振荣, 叶景峰, 王晟, 等.煤油燃烧场主要组分浓度测量[J].强 与粒子束, 2014, 26(7):019003.http://mall.cnki.net/magazine/article/QJGY201408018.htm

    ZHANG ZH R, YE J F, WANG SH,et al.. Measurements of major species concentration in kerosene combustion[J].High Power Laser and Particle Beams, 2014, 26(7):019003.(in Chinese)http://mall.cnki.net/magazine/article/QJGY201408018.htm
    [7] 张振荣, 胡志云, 黄梅生, 等.纳秒级 脉冲展宽系统的分析及应用[J].光学 精密工程, 2011, 19(2):311-315.https://wenku.baidu.com/view/8a7fe149be1e650e52ea9982.html

    ZHANG ZH R, HU ZH Y, HUANG M SH,et al.. Analysis and application of nanosecond laser pulse stretching system[J].Opt. Precision Eng., 2011, 19(2):311-315.(in chinese)https://wenku.baidu.com/view/8a7fe149be1e650e52ea9982.html
    [8] CROSLEY D R. Laser Probes for Combustion Chemistry[R]. Amer. Chem. Soc. Symposium Series #134, American Chemical Society, Washington, D. C., USA, 1980.
    [9] ECKBRETH A C. Laser Diagnostics for Combustion Temperature and Species[R]. 2nd Ed., Gordon and Breach, 1996.
    [10] KOHSE-HÖINGHAUS K. Laser techniques for the quantitative detection of reactive intermediates in combustion systems[J].Progr. Energy Combust.Sci., 1994, 20:203-279.doi:10.1016/0360-1285(94)90015-9
    [11] DAILY J W. Laser induced fluorescence spectroscopy in flames[J].Progr. Energy Combust.Sci., 1997, 23:133-199.doi:10.1016/S0360-1285(97)00008-7
    [12] SCHIFFMAN A, CHANDLER D W. Experimental Measurements of State Resolved, Rotationally Inelastic Energy Transfer[J].Int. Rev.Phys. Chem., 1995, 14:371-420.doi:10.1080/01442359509353315
    [13] DAILY J W, ROTHE E W. Effect of laser intensity and of lower-state rotational energy transfer upon temperature measurements made with laser-induced fluorescence[J].Appl. Phys. B, 1999, 68:131-140, .doi:10.1007/s003400050597
    [14] 关小伟. 燃烧诊断中 诱导荧光和简并四波混频技术研究[D]. 西安: 西北核技术研究所, 2006.

    GUAN X W. The research on laser induced fluorescence and degenerate four wave-mixing techniques for combustion diagnostics[D]. Xi'an: Northwest Institute of Nuclear Technology, 2006. (in chinese)
    [15] BYRNE S O, STOTZ I, HOUWING A F P,et al. . OH PLIF imaging of supersonic combustion using cavity injection[R]. AIAA, 2005: 3357.
    [16] STRAKEY P A, WOODRUFF S D, WILLIAMS T C,et al. . OH-PLIF measurements of high-pressure, hydrogen augmented premixed flames in the simval combustor[R]. AIAA, 2007: 980.
    [17] ANDRESEN P, SCHLUTER H, WOLFF D,et al.. Identification and Imaging of OH(v″=0) and O2(v″=6 or 7) in an automobile spark-ignition engine using a tunable krf excimer laser[J].Appl. Optics, 1992, 31:7684-7689.doi:10.1364/AO.31.007684
    [18] ZHOU B, BRACKMANN C, LI Z S,et al.. Simultaneous multi-species and temperature visualization of premixed flames in the distributed reaction zone regime[J].Proceedings of the Combustion Institute, 2015, 35:1409-1416.doi:10.1016/j.proci.2014.06.107
    [19] SLABAUGH C D, PRATT A C, LUCHT R P. Simultaneous 5 kHz OH-PLIF/PIV for the study of turbulent combustion at engine conditions[J].Appl. Phys. B, 2015, 118:109-130.doi:10.1007/s00340-014-5960-5
    [20] MERCIER X, JAMETTE P, PAUWELS J F, DESGROUX P. Absolute CH concentration measurements by cavity ring-down spectroscopy in an atmospheric diffusion flame[J].Chem. Phys. Lett., 1999, 305:334-342.doi:10.1016/S0009-2614(99)00416-9
    [21] THOMAN J W, MCILROY A. Absolute CH radical concentrations in rich low-pressure methane-oxygen-argon flames via cavity ringdown spectroscopy of the A2Δ-X2Π Transition[J].J. Phys. Chem. A, 2000, 104:4953-4961.doi:10.1021/jp0001687
    [22] LUQUE J, JEFFRIES J B, SMITH G P,et al.. Combined cavity ringdown absorption and laser-induced fluorescence imaging measurements of CN(B-X) and CH(B-X) in low pressure CH4-O2-N2, and CH4-NO-O2-N2flames[J].Combust. Flame, 2001, 126:1725-1735.doi:10.1016/S0010-2180(01)00286-3
    [23] MERCIER X, THERSSEN E, PAUWELS J F,et al.. Quantitative features and sensitivity of cavity ring-down measurements of species concentrations in flames[J].Combust. Flame, 2001, 125:656-667.https://www.sciencedirect.com/science/article/pii/S0360128598000227
    [24] EVERTSEN R, STOLK R L, MEULEN J J. Investigations of cavity ring down spectroscopy applied to the detection of ch in atmospheric flames[J].Combust. Sci. Technol., 1999, 149:19-34.doi:10.1080/00102209908952097
    [25] MEIJER G, BOOGAARTS M G H, JONGMA R T,et al.. Coherent cavity ring down spectroscopy[J].Chem.Phys. Lett., 1994, 217:112-116.doi:10.1016/0009-2614(93)E1361-J
    [26] LOZOVSKY V A, DERZY I, CHESKIS S. Nonequilibrium concentrations of the vibrationally excited OH radical in a methane flame measured by cavity ring-down spectroscopy[J].Chem. Phys. Lett., 1998, 284:407-411, .doi:10.1016/S0009-2614(97)01443-7
    [27] MCILROY A. Direct measurement of 1CH2in flames by cavity ringdown laser absorption spectroscopy[J].Chem. Phys. Lett., 1998, 296:151-158, .doi:10.1016/S0009-2614(98)01022-7
    [28] SCHERER J J, ANIOLEK K W, CERNANSKY N P,et al.. Determination of methyl radical concentrations in a methane/air flame by infrared cavity ringdown laser absorption spectroscopy[J].J. Chem. Phys., 1997, 107:6196-6203, .doi:10.1063/1.474284
    [29] LUQUE J, JEFFRIES J B, SMITH G P,et al.. Quasi-simultaneous detection of CH2O and CH by cavity ring-down absorption and laser induced fluorescence in a methane/air low pressure flame[J].Appl. Phys. B, 2001, 73:731-738, .https://www.researchgate.net/publication/229401569_Laser-induced_fluorescence_detection_of_HCO_in_a_low-pressure_flame
    [30] SCHERER J J, RAKESTRAW D J. Cavity ringdown laser absorption spectroscopy detection of formyl(HCO) radical in a low pressure flame[J].Chem. Phys. Lett., 1997, 265:169-176.doi:10.1016/S0009-2614(96)01403-0
    [31] NYHOLM K, MAIER R, AMINOFF C G,et al.. Detection of OH in flames by using polarization spectroscopy[J].Appl. Opt., 1993, 32:919-924.doi:10.1364/AO.32.000919
    [32] REICHARDT T A, GIANCOLA W C, LUCHT R P. Experimental investigation of satuated polarizationspectroscopy for quantitative concentration measurements[J].Appl. Opt., 2000, 39:2002-2008.doi:10.1364/AO.39.002002
    [33] NYHOLM K, FRITZON R, ALDEN M. Two-dimensional imaging of OH in flames by use of polarization spectroscopy[J].Optics Lett., 1993, 18:1672-1674.doi:10.1364/OL.18.001672
    [34] SUVERNEV A A, DREIZIER A, DREIER T,et al.. Polarization spectroscopic measurement and spectral simulation of OH(A2Σ-X2Π) and NH(A3Π-X3Σ) transitions in atmospheric pressure flames[J].Appl. Phys. B, 1995, 61:421-427.doi:10.1007/BF01081270
    [35] NYHOLM K, KAIVOLA M, AMINOFF C G. Polarization spectroscopy applied to C2detection in a flame[J].Appl. Phys. B, 1995, 60:5-10.doi:10.1007/BF01082066
    [36] NYHOLM K, FRITZON R, GEORGIEV N,et al.. Two photon induced polarization spectroscopy applied to the detection of NH3and CO molecules in cold flows and flames[J].Optics Commun., 1995, 114:76-82.doi:10.1016/0030-4018(94)00554-8
    [37] 张振荣, 黄梅生, 胡志云, 等.二维偏振光谱技术对燃烧场的诊断[J].工程热物理学报, 2010, 31(11):1973-1976.http://www.cqvip.com/QK/90922X/201011/35677311.html

    ZHANG ZH R, HU ZH Y, HUANG M SH,et al. Detection of OH in flames by using single-pulse two-dimensional polarization spectroscopy[J].Journal of Engineering Thermophysics, 2010, 31(11):1973-1976.(in chinese).http://www.cqvip.com/QK/90922X/201011/35677311.html
    [38] STEINBERG A M, ARNDT C M, STOPPER U,et al. . Diagnostic requirements for the development of low-emission, fuel-flexible gas turbine combustors[R]. AIAA, 2012: 0698.
    [39] HASSA C, WILLERT C, FISCHER M,et al. . Nonintrusive flowield, temperature and species measurements on a generic aeroengine combustor at elevated pressure[C]. Proceedings of ASME Turbo Expo, Barcelona, Spain, 2006: GT2006-90213.
    [40] HARIYAN M T, BHUIYAN A, MEYER S,et al.. Dual-pump coherent anti-stokes Raman scattering system for temperature and species measurements in an optically accessible high-pressure gas turbine combustor facility[J].Meas. Sci. Technol., 2011, 22:015301.doi:10.1088/0957-0233/22/1/015301
    [41] EWART P, WILLIAMS R, LIM E,et al.. Comparison of in-Cylinder coherent anti-stokes-Raman scattering temperature measurements with predictions from an engine simulation[J].Int. J. Engine Research, 2001, 2:146-162.http://jer.sagepub.com/content/2/2/149.short
    [42] BRACKMANN C, BOOD J, AFZELIUS M,et al.. Thermometry in internal combustion engines via dual-broadband rotational coherent anti-stokes Raman spectroscopy[J].Meas. Sci. Technol., 2004, 15:R13-R25.doi:10.1088/0957-0233/15/3/R01
    [43] MAGNOTTI G, CUTLER A D, DANEHY P. Development of a dual-pump CARS system for measurements in a supersonic combusting free jet[R]. AIAA, 2012: 1193.
    [44] 赵建荣, 杨仕润, 俞刚.CARS在超音速燃烧研究中的应用[J]. 技术, 2000, 24(4):207-212.http://www.cnki.com.cn/Article/CJFDTOTAL-JGJS200004003.htm

    ZHAO J R, YANG SH R, YU G. Study of supersonic combustion by CARS measurement technique[J].Laser Technology, 2000, 24(4):207-212.(in chinese)http://www.cnki.com.cn/Article/CJFDTOTAL-JGJS200004003.htm
    [45] DAVIS L C, MARKO K A, ROMAI L. Angular distribution of coherent Raman emission in degenerate four-wave mixing with pumping by a single diffraction coupled laser beam:configurations for high spatial resolution[J].Applied Optics, 1981, 20(9):1685-1690.doi:10.1364/AO.20.001685
    [46] HU ZH Y, LIU J R, YE J F,et al.. Laser-based measurements of temperature, species and velocity in engine combustor[J].Proceedings of SPIE, 2013, 8796:87961G.doi:10.1117/12.2011241.full
    [47] OKOJIE R S, DANEHY P M, WATKINS A N,et al. . An overview of NASA hypersonic experimental diagnostic and instrumentation technologies for ground and flight testing[R]. AIAA, 2009: 7279.
    [48] 李国华, 胡志云, 王晟, 等.基于相干反斯托克斯拉曼散射的二维温度场扫描测量[J].光学精密工程, 2016, 24(1):14-19.http://mall.cnki.net/magazine/Article/GXJM201601003.htm

    LI G H, HU ZH Y, WANG SH,et al.. 2D scanning CARS for temperature distribution measurement[J].Opt. Precision Eng., 2016, 24(1):14-19.(in chinese)http://mall.cnki.net/magazine/Article/GXJM201601003.htm
    [49] 张立荣, 胡志云, 叶景峰, 等.移动式CARS系统测量超音速燃烧室出口温度[J].中国 , 2013, 40(4):0408007.http://www.opticsjournal.net/abstract.htm?id=OJ130407000226SoVrXu

    ZHANG L R, HU ZH Y, YE J F,et al.. Mobile CARS temperature measurements at exhaust of supersonic combustor[J].Chinese Journal of Lasers, 2013, 40(4):0408007.(in chinese)http://www.opticsjournal.net/abstract.htm?id=OJ130407000226SoVrXu
    [50] ROY S, MEYER T R. Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals[J].Applied Physics Letters, 2005, 87:264103.doi:10.1063/1.2159576
    [51] ECKBRETH A C, HALL R J. CARS concentration sensitivity with and without nonresonant background suppression[J].Combust. Sci. Technol., 1981, 25:175-192.doi:10.1080/00102208108547501
    [52] ROY S, GORD J R, PATNAIK A K. Recent advances in coherent anti-Stokes Raman scattering spectroscopy:fundamental developments and applications in reacting flows[J].Progress in Energy and Combustion Science, 2010, 36:280-306.doi:10.1016/j.pecs.2009.11.001
    [53] 陶波, 王晟, 胡志云, 等.TDLAS与CARS共线测量发动机温度[J].工程热物理学报, 2015, 36(10):2282-2286.http://www.cqvip.com/QK/90922X/201510/666366768.html

    TAO B, WANG SH, HU ZH Y,et al. Measurements of engine combustion temperature by using coaxial TDLAS and CARS technique[J].Journal of Engineering Thermophysics, 2015, 36(10):2282-2286.(in chinese).http://www.cqvip.com/QK/90922X/201510/666366768.html
    [54] SUTTON G., LEVICK A, EDWARDS G., GREENHALGH D. A combustion temperature and species standard for the calibration of laser diagnostic techniques[J].Combustion and Flame, 2006, 147:39-48.doi:10.1016/j.combustflame.2006.07.013
    [55] 王晟, 刘晶儒, 胡志云, 等.用于燃烧场诊断的分子滤波瑞利散射技术[J].光学 精密工程, 2011, 19(2):445-451.http://www.eope.net/fileup/PDF/20110232.pdf

    WANG SH, LIU J R, HU ZH Y,et al.. Development of filtered Rayleigh scattering for combustion diagnostic application[J].Opt. Precision Eng., 2011, 19(2):445-451.(in chinese)http://www.eope.net/fileup/PDF/20110232.pdf
    [56] TENTI G, BOLEY C D, DESAI R C. On the kinetic model description of Rayleigh-scattering from molecular gases[J].Canadian Journal of Physics, 1974, 52(4):285-290.doi:10.1139/p74-041
    [57] KEARNEY S P, BERESH S J, GRASSER T W. A filtered rayleigh scattering apparatus for gas-phase and combustion temperature imaging[R]. AIAA, 2003: 584.
    [58] KEARNEY S P, BERESH S J, GRASSER T W,et al. . Filtered Rayleigh Scattering thermometry in vortex-strained and sooting flames[R]. AIAA, 2004: 1358.
    [59] 关小伟, 刘晶儒, 黄梅生, 等.PLIF法定量测量甲烷-空气火焰二维温度场分布[J].强 与粒子束, 2005, 17(2):173-176.http://www.chinabaike.com/t/30815/2014/1208/3039161.html

    GUAN X W, LIU J R, HUANG M SH,et al.. Two-dimensional temperature field measurement in a methane-air flame by PLIF[J].High Power Laser and Particle Beams, 2005, 17(2):173-176.(in Chinese)http://www.chinabaike.com/t/30815/2014/1208/3039161.html
    [60] PALMER J L, HANSON R K. Temperature imaging in a supersonic free jet of combustion gases with two-line OH fluorescence[J].Applied Optics, 1996, 35(3):485-499.doi:10.1364/AO.35.000485
    [61] MEIER U E, GABMANN D W, STRICKER W. LIF imaging and 2D temperature mapping in a model combustor at elevated pressure[J].Aerospace Science and Technology, 2000, 4:403-414.doi:10.1016/S1270-9638(00)00142-5
    [62] VYRODOV A O, HEINZE J, DILLMANN M,et al.. Laser-induced fluorescence thermometry and concentration measurements on NO A-X(0-0) transitions in the exhaust gas of high pressure CH4/Air flames[J].Appl. Phys. B, 1995, 61:409-414.doi:10.1007/BF01081268
    [63] SCHULZ C, SICK V, HEINZE J,et al.. Laser-induced fluorescence detection of nitric oxide in high-pressure flames with A-X (0, 2) excitation[J].Appl. Optics, 1997, 36:3227-3232.doi:10.1364/AO.36.003227
    [64] PALMER J L, MCMILLIN B K, HANSON R K. Multi-line fluorescence imaging of the rotational temperature field in a shock-tunnel free jet[J].Appl. Phys. B, 1996, 63:167-178.doi:10.1007%2F978-3-540-77980-3_10
    [65] KAMINSKI C F, ENGSTR M J, ALD N M. Quasi-instantaneous two-dimensional temperature measurements in a spark ignition engine using 2-line atomic fluorescence[J].Proceedings of Combustion Institute, 1998, 27:85-93.doi:10.1016/S0082-0784(98)80393-7
    [66] MEDWELL P R, CHAN Q N, KALT P A M,et al.. Development of temperature imaging using two-line atomic fluorescence[J].Applied Optics, 2009, 48:1237-48.doi:10.1364/AO.48.001237
    [67] MEDWELL P R, CHAN Q N, KALT P A M,et al.. Instantaneous temperature imaging of diffusion flames using two-line atomic fluorescence[J].Applied Spectroscopy, 2010, 64:173-186.doi:10.1366/000370210790619573
    [68] CHAN Q N, MEDWELL P R, ALWAHABI Z T,et al.. Assessment of interferences to nonlinear two-line atomic fluorescence(NTLAF) in sooty flames[J].Applied Physics B, 2011, doi:10.1007/s00340-011-4497-0.
    [69] 汪亮.燃烧实验诊断学[M].北京:国防工业出版社, 2011.

    WANG L.Combustion Experiment Diagnostics[M]. Beijing:Defense Industry Publishing House, 2011.
    [70] 叶景峰, 胡志云, 刘晶儒, 等.分子标记速度测量技术及应用研究进展[J].实验流体力学, 2015, 29(3):11-17.http://www.oalib.com/paper/4429701

    YE J F, HU ZH Y, LIU J R,et al.. Development and application of molecular tagging velocimetry[J].Journal of Experiments in Fluid Mechanics, 2015, 29(3):11-17.(in Chinese)http://www.oalib.com/paper/4429701
    [71] MILES R, COHEN C, CONNORS J,et al.. Velocity measurements by vibrational tagging and fluorescent probing of oxygen[J].Optics Letters, 1987, 12(11):861-863.http://www.ncbi.nlm.nih.gov/pubmed/19741896
    [72] MATT W, WALTER L A. Simplified and portable RELIEF flow tagging velocimetry system[R]. AIAA, 2008: 3757.
    [73] MICHAEL J B, EDWARDS M R, DOGARIU A,et al.. Femtosecond laser electronic excitation tagging for quantitative velocity imaging in air[J].Applied Optics, 2011, 50(26):5158-5162.https://www.researchgate.net/publication/263832236_Femtosecond_Laser_Electronic_Excitation_Tagging_FLEET_for_Imaging_Flow_Structure_in_Unseeded_Air
    [74] SHIRLEY J A, BOEDEKER L R. Non-intrusive Space Shuttle Main Engine nozzle exit diagnostics[R]. AIAA, 1988: 3088.
    [75] WEHRMEYER J A, RIBAROV L A, OGUSS D A,et al.. Flame flow tagging velocimetry with 193-nm H2O photodissociation[J].Applied Optics, 1999, 38(22):6912-6917.
    [76] PITZ R W, LAHR M D, DOUGLAS Z W,et al.. Hydroxyl tagging velocimetry in a supersonic flow over a cavity[J].Applied Optics, 2005, 44(31):6692-6700.doi:10.1364/AO.44.006692
    [77] ALEXANDER A, WEHRMEYER J, RUNGE W,et al. . Nonintrusive measurement of gas turbine exhaust velocity using hydroxyl tagging velocimetry[R]. AIAA, 2008: 3709.
    [78] PERKINS A N, RAMSEY M, PITZ R W,et al. . Investigation of a bow shock in a shock tube flow facility using hydroxyl tagging velocimetry(HTV)[R]. AIAA, 2011: 1092.
    [79] BARLOW S. Robert. Laser diagnostics and their interplay with computations to understand turbulent combustion[J].Proceedings of the Combustion Institute, 2007, 31:49-75.doi:10.1016/j.proci.2006.08.122
    [80] BOXX I, SLABAUGH C, KUTNE P,et al.. 3 kHz PIV/OH-PLIF measurements in a gas turbine combustor at elevated pressure[J].Proceedings of the Combustion Institute, 2015, 35:3793-3802.doi:10.1016/j.proci.2014.06.090
    [81] KOTHNUR P S, TSURIKOV M S, CLEMENS N T,et al.. Planer imaging of CH, OH, and velocity in turbulent non-premixed jet flames[J].Proceedings of the Combustion Institute, 2002, 29:1921-1927.doi:10.1016/S1540-7489(02)80233-4
    [82] JOHCHI A, NAKA Y, SHIMURA M,et al.. Investigation on rapid consumption of? ne scale unburned mixture islands in turbulent flame via 10 kHz simultaneous CH OH PLIF and SPIV[J].Proceedings of the Combustion Institute, 2015, 35:3663-3671.doi:10.1016/j.proci.2014.09.007
    [83] SJOHOLMA J, ROSELL J, LI B,et al.. Simultaneous visualization of OH, CH, CH2O and toluene PLIF in a methane jet fame with varying degrees of turbulence[J].Proceedings of the Combustion Institute, 2013, 34:1475-1482.doi:10.1016/j.proci.2012.05.037
    [84] LESIEUR M, M TAIS O. New trends in LES of turbulence[J].Annu. Rev. Fluid Mech., 1996, 28:45-82.doi:10.1146/annurev.fl.28.010196.000401
    [85] BROCKHINKE A, ANDRESEN P, KOHSE-HOINGHAUS K. Quantitative one dimensional single-pulse multi-species concentration and temperature measurement in the lift-off region of a turbulent H2/Air diffusion flame[J].Appl. Phys. B, 1995, 61:533-545.doi:10.1007/BF01091211
    [86] KOHSE-HOINGHAUSA K, BARLOWB R S, ALDEN M,et al... Combustion at the focus:laser diagnostics and control[J].Proceedings of the Combustion Institute, 2005, 30:89-123.doi:10.1016/j.proci.2004.08.274
    [87] NATHAN G J, KALT P A M, ALWAHABI Z T,et al.. Recent advances in the measurement of strongly radiating, turbulent reacting flows[J].Prog. Energy Combust. Sci. 2012, 38:41-61.doi:10.1016/j.pecs.2011.04.001
    [88] SUTTON J A, LEMPERT W R. Recent Advances in High-Energy, High-Repetition Rate Diagnostics for PLIF, Rayleigh and Raman Scattering Imaging in Turbulent Reacting Flows[R]. AIAA, 2011: 361.
  • 加载中
图(12)/ 表(1)
计量
  • 文章访问数:2943
  • HTML全文浏览量:1015
  • PDF下载量:396
  • 被引次数:0
出版历程
  • 收稿日期:2017-12-14
  • 修回日期:2018-02-04
  • 刊出日期:2018-08-01

目录

    /

      返回文章
      返回
        Baidu
        map