留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

梯度掺杂结构GaN光电阴极的稳定性

李飙,任艺,常本康

downloadPDF
李飙, 任艺, 常本康. 梯度掺杂结构GaN光电阴极的稳定性[J]. , 2018, 11(4): 677-683. doi: 10.3788/CO.20181104.0677
引用本文: 李飙, 任艺, 常本康. 梯度掺杂结构GaN光电阴极的稳定性[J]. , 2018, 11(4): 677-683.doi:10.3788/CO.20181104.0677
LI Biao, REN Yi, CHANG Ben-kang. Stability of gradient-doping GaN photocathode[J]. Chinese Optics, 2018, 11(4): 677-683. doi: 10.3788/CO.20181104.0677
Citation: LI Biao, REN Yi, CHANG Ben-kang. Stability of gradient-doping GaN photocathode[J].Chinese Optics, 2018, 11(4): 677-683.doi:10.3788/CO.20181104.0677

梯度掺杂结构GaN光电阴极的稳定性

doi:10.3788/CO.20181104.0677
基金项目:

国家自然科学基金项目No.61171042

详细信息
    作者简介:

    李飙(1974-), 男, 河南太康人, 博士, 讲师, 主要从事光电材料性能评估与检测方面的研究。E-mail:libiao2006@126.com

  • 中图分类号:O433;TN203

Stability of gradient-doping GaN photocathode

Funds:

National Natural Science Foundation of ChinNo.61171042

More Information
  • 摘要:利用GaN光电阴极多信息量测试评估系统,对反射式梯度掺杂和均匀掺杂GaN光电阴极样品进行了激活及衰减后的量子效率测试,并测试衰减速率。在同样的衰减时间内,和均匀掺杂样品相比,梯度掺杂样品的衰减比例较小,衰减速率较慢,其原因在于梯度掺杂结构可在其发射层内部产生系列内建电场,致使其能带连续向下弯曲,导致其表面真空能级比均匀掺杂样品下降得更低,发射层表面形成的负电子亲和势更明显,造成发射层内的光生电子更易逸出,阴极量子效率的衰减变慢,从而使其稳定性强于均匀掺杂结构。

  • 图 1反射式均匀掺杂样品A和梯度掺杂样品B结构图

    Figure 1.Structure of reflection-mode uniform-doping sample A and gradient-doping sample B

    图 2样品A和B在激活结束后的量子效率测试曲线

    Figure 2.Quantum efficiency curves of sample A and sample B after activation

    图 3样品A和B的量子效率测试曲线

    Figure 3.Quantum efficiency curves of GaN photocathodes in variable conditions

    图 4样品A和B的相对稳定性测试曲线

    Figure 4.Curves of relative sensitivity for sample A and B

    图 5反射式GaN光电阴极的表面势垒示意图

    Figure 5.Surface potential barrier of reflection-mode GaN photocathode

    图 6均匀掺杂样品A和梯度掺杂样品B能带结构示意图(Ec为导带能级,Ev为价带能级,EF为费米能级,E0为真空能级,Eg为GaN的禁带宽度)

    Figure 6.Energy band structure of uniform-doping sample A and gradient-doping sample B(ECis the conduction band minimum,EVis the valence band maximum,EFis the Fermi level,E0is the vacuum level,Egis the band gap)

    表 1均匀掺杂样品A的衰减测试结果

    Table 1.Quantum efficiency attenuation test results of sample A

    波长/nm 240 260 280 300 320 340
    激活后QE/% 51 36 27 20 16 14
    12 h后QE/% 42 25 16 9.8 6.2 4.9
    衰减比例/% 17.6 30.6 40.7 46 61.2 65
    注:衰减比例为(激活后QE-12 h后QE)/激活后QE。
    下载: 导出CSV

    表 2梯度掺杂样品B的衰减测试结果

    Table 2.Quantum efficiency attenation test results of sample B

    波长/nm 240 260 280 300 320 340
    激活后QE/% 57 44 36 28 24 21
    12 h后QE/% 48 32 24 18 13 10
    衰减比例/% 15.8 27.3 33.3 35.7 45.8 52.4
    注:衰减比例为(激活后QE-12 h后QE)/激活后QE。
    下载: 导出CSV

    表 3样品A和样品B的衰减速率测试结果

    Table 3.Attenuation rate test results of decadence rate for uniform-doping sample A and gradient-doping sample B

    衰减速率(a.u/h)
    测试时间/h 2 4 6 8 10 12
    梯度掺杂样品B 32 19.1 12.7 10.4 4.7 4.6
    均匀掺杂样品A 40 30 19.1 17.6 14.3 8.3
    注:衰减速率为(测试值1-测试值2)×100/测试值1。
    下载: 导出CSV
  • [1] 洪国彬, 杨钧杰, 卢廷昌.蓝紫光氮化镓光子晶体面射型 器[J].中国光学, 2014, 7(4):559-571.//www.illord.com/CN/abstract/abstract9184.shtml

    HONG K B, YANG CH CH, LU T CH. Blue-violet GaN-based photonic crystal surface emitting lasers[J].Chin. Opt., 2014, 7(4):559-571.(in Chinese)//www.illord.com/CN/abstract/abstract9184.shtml
    [2] 秦华, 黄永丹, 孙建东, 等.二维电子气等离激元太赫兹波器件[J].中国光学, 2017, 10(1):51-67.//www.illord.com/CN/abstract/abstract9511.shtml

    QIN H, HUANG Y D, SUN J D,et al.. Terahertz-wave devices based on plasmons in two-dimensional electron gas[J].Chin. Opt., 2017, 10(1):51-67.(in Chinese)//www.illord.com/CN/abstract/abstract9511.shtml
    [3] 蔡丽娥, 张保平, 张江勇, 等.GaN基蓝光VCSEL的制备及光学特性[J].发光学报, 2016, 37(4):452-456.http://www.cqvip.com/QK/92489X/201604/668520133.html

    CAI L E, ZHANG B P, ZHANG J Y,et al.. Fabrication and characteristics of GaN-based blue VCSEL[J].Chinese J. Luminescence, 2016, 37(4):452-456.(in Chinese)http://www.cqvip.com/QK/92489X/201604/668520133.html
    [4] 邹水平, 吴柏禧, 万珍平, 等.电-热应力对GaN基白光LED可靠性的影响[J].发光学报, 2016, 37(1):124-129.http://www.cqvip.com/QK/92489X/201601/667808202.html

    ZOU SH P, WU B X, WAN ZH P,et al.. Effect of current-temperature stress on the reliability of GaN LED[J].Chinese J. Luminescence, 2016, 37(1):124-129.(in Chinese)http://www.cqvip.com/QK/92489X/201601/667808202.html
    [5] 李志全, 王聪, 李文超, 等.利用Ag/P-GaN双光栅改善LED发光特性[J].光学 精密工程, 2017, 25(5):1185-1191.http://wuxizazhi.cnki.net/Sub/yqyb/a/GXJM201705009.html

    LI ZH Q, WANG C, LI W CH,et al.. Improving LED luminescence properties by using Ag/P-GaN double grating[J].Opt. Precision Eng., 2017, 25(5):1185-1191.(in Chinese)http://wuxizazhi.cnki.net/Sub/yqyb/a/GXJM201705009.html
    [6] 王永进, 张锋华, 高绪敏, 等.面向可见光波段的非周期悬空GaN薄膜光栅[J].光学 精密工程, 2017, 25(12):3020-3026.https://www.wenkuxiazai.com/word/00576a9fd5bbfd0a795673eb-1.doc

    WANG Y J, ZHANG F H, GAO X M,et al.. Freestanding non-periodic GaN gratings in visible wavelength region[J].Opt. Precision Eng., 2017, 25(12):3020-3026.(in Chinese)https://www.wenkuxiazai.com/word/00576a9fd5bbfd0a795673eb-1.doc
    [7] SOMMER A H. Stability of photocathode[J].Appl. Opt., 1973, 12(1):90-92.doi:10.1364/AO.12.000090
    [8] 徐江涛.真空残气对GaAs阴极发射性能的影响[J].应用光学, 2003, 24(2):13-15.http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yygx200302005

    XU J T. Effect of residual gas on emission property of Gallium Arsenide cathode in vacuum[J].J. Appl. Opt., 2003, 24(2):13-15.(in Chinese)http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yygx200302005
    [9] WADA T, NITTA T, NOMURA T. Influence of exposure to CO, CO2and H2O on the stability of GaAs photocathodes[J].Jpn. J. Appl. Phys., 1990, 29(10):2087-2091.https://www.researchgate.net/profile/Shiyu_Sun4
    [10] MACHUCA F. A Thin Film p-type GaN Photocathode: prospect for a high performance electron emitter[D]. Stanford: University Stanford, 2004.
    [11] ZOU J J, CHANG B K. Gradient-doping negative electron affinity GaAs photocathodes[J].Opt. Eng., 2006, 45(5):054001.doi:10.1117/1.2205171
    [12] YANG ZH, CHANG B K, ZOU J J. Comparison between gradient-doping GaAs photocathode and uniform-doping GaAs photocathode[J].Appl. Opt., 2007, 46(28):7035-7039.doi:10.1364/AO.46.007035
    [13] 乔建良, 常本康, 杜晓晴, 等.反射式负电子亲和势GaN光电阴极量子效率衰减机理研究[J].物理学报, 2010, 59(4):2855-2859.doi:10.7498/aps.59.2855

    QIAO J L, CHANG B K, DU X Q,et al.. Quantum efficiency decay mechanism for reflection mode negative electron affinity GaN photocathode[J].Acta Phys. Sinica, 2010, 59(4):2855-2859.(in Chinese)doi:10.7498/aps.59.2855
    [14] 高频, 王晓晖, 杜玉杰, 等.NEA GaN光电阴极的制备与评估[J].红外技术, 2011, 33(6):332-335.http://www.cqvip.com/QK/92901X/201106/38270750.html

    GAO P, WANG X H, DU Y J,et al.. Preparation and evaluation of NEA GaN photocthode[J].Infrared Technol., 2011, 33(6):332-335.(in Chinese)http://www.cqvip.com/QK/92901X/201106/38270750.html
    [15] IWAYA M, TAKEUCHI T, YAMAGUCHI S,et al.. Reduction of etch pit density in organometallic vapor phase epitaxy-grown GaN on sapphire by insertion of a low-temperature-deposited buffer layer between high-temperature-grown GaN[J].Jpn. J. Appl. Phys., 1998, 37:L316-L318.doi:10.1143/JJAP.37.L316
    [16] NAKCMURA S, MUKAI T, SENOH M,et al.. Thermal annealing effects on p-type Mg-doped GaN films[J].Jpn. J. Appl. Phys., 1992, 31:L139-L140.doi:10.1143/JJAP.31.L139
    [17] MACHUCA F, LIU Z. Fabrication of group Ⅲ-Nitride photocathode having Cs activation layer: US, 0170324 A1[P]. 2006-01-01.
    [18] TERESHCHENKO O E, SHAIBLER G, YAROSHEVICH A S,et al.. Low-temperature method of cleaning p-GaN(0001) surfaces for photoemitters with effective negative electron affinity[J].Phys. Solid State, 2004, 46(10):1949-1953.doi:10.1134/1.1809437
    [19] KING S W, BARNAK J P, BREMSER M D,et al.. Cleaning of AlN and GaN surfaces[J].J. Appl. Phys., 1998, 84(9):5248-5260.doi:10.1063/1.368814
    [20] 乔建良, 田思, 常本康, 等.负电子亲和势GaN光电阴极激活机理研究[J].物理学报, 2009, 58(8):5847-5851.doi:10.7498/aps.58.5847

    QIAO J L, TIAN S, CHANG B K,et al.. Activation mechanism of negative electron affinity GaN photocathode[J].Acta Phys. Sinica, 2009, 58(8):5847-5851.(in Chinese)doi:10.7498/aps.58.5847
    [21] 邹继军, 常本康, 杜晓晴, 等.GaAs光电阴极光谱响应曲线形状的变化[J].光谱学与光谱分析, 2007, 27(8):1465-1468.http://www.cqvip.com/QK/90993X/200708/25252972.html

    ZOU J J, CHANG B K, DU X Q,et al.. Variation of spectral response curve shape of GaAs photocathodes[J].Spectrosc. Spectral Anal., 2007, 27(8):1465-1468.(in Chinese)http://www.cqvip.com/QK/90993X/200708/25252972.html
    [22] NIU J, ZHANG Y J, CHANG B K,et al.. Influence of varied doping structure on photoemissive property of photocathode[J].Chin. Phys. B, 2011, 20(4):044209.doi:10.1088/1674-1056/20/4/044209
    [23] 张益军. 变掺杂GaAs光电阴极研制及其特性评估[D]. 南京: 南京理工大学, 2012.http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2275823

    ZHANG Y J. Design and characteristic evaluation of varied doping GaAs photocathode[D]. Nanjing: Nanjing University of Science and Technology, 2012. (in Chinese)http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2275823
  • 加载中
图(6)/ 表(3)
计量
  • 文章访问数:2052
  • HTML全文浏览量:927
  • PDF下载量:185
  • 被引次数:0
出版历程
  • 收稿日期:2017-12-27
  • 修回日期:2018-01-30
  • 刊出日期:2018-08-01

目录

    /

      返回文章
      返回
        Baidu
        map