留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Kramers-Kronig关系的研究与发展

阎春生

downloadPDF
阎春生. Kramers-Kronig关系的研究与发展[J]. , 2019, 12(2): 179-198. doi: 10.3788/CO.20191202.0179
引用本文: 阎春生. Kramers-Kronig关系的研究与发展[J]. , 2019, 12(2): 179-198.doi:10.3788/CO.20191202.0179
YAN Chun-sheng. Research and development on Kramers-Kronig relationship[J]. Chinese Optics, 2019, 12(2): 179-198. doi: 10.3788/CO.20191202.0179
Citation: YAN Chun-sheng. Research and development on Kramers-Kronig relationship[J].Chinese Optics, 2019, 12(2): 179-198.doi:10.3788/CO.20191202.0179

Kramers-Kronig关系的研究与发展

doi:10.3788/CO.20191202.0179
基金项目:

国家自然科学基金11621101

国家自然科学基金91233208

浙江省科技部中央高校基础研究经费2017FZA5001

详细信息
    作者简介:

    阎春生(1973-), 男, 山西文水人, 博士, 副教授, 硕士生导师, 1994年、1999年于电子科技大学分别获得学士、硕士学位, 2003年于清华大学获得博士学位, 主要从事光传感、光层析成像技术及近场光学等方面的研究。E-mail:yancs@zju.edu.cn

  • 中图分类号:O174.5

Research and development on Kramers-Kronig relationship

Funds:

National Natural Science Foundation of China11621101

National Natural Science Foundation of China91233208

Fundamental Research Funds for the Central Universities from the Science and Technology Department of Zhejiang Province2017FZA5001

More Information
  • 摘要:Kramers-Kronig关系(简称KK关系)是希尔伯特变换的一个特例,描述了具有因果性的平方可积函数实部与虚部之间的数学联系,具有普适的物理背景。本文介绍了KK关系的历史及数学物理本质,详细阐述了其在电学、磁学、声学、光学、人工介质以及光通信中的具体形式、涵义及应用,包括反射和透射响应函数、电极化率、介电常数、折射率、电导率、电阻抗、磁导率、原子散射因子、绝热压缩系数、声折射率、单边带时域信号、空间隐身介质还有各种非线性介质等。分析了截断误差在实际应用中对KK积分计算结果的影响,总结了各种积分限外推方法以及各种基于锚点的减法KK关系,包括单减KK关系、多减KK关系及差分多减KK关系等。

  • 图 1公式(1)的积分区域(R→∞,r→0)

    Figure 1.Integral region of formula 1(R→∞,r→0)

    图 2κ(黑点)和n(灰线)的雅克比谱分布[60]

    Figure 2.Jacobian spectrum distribution of theκ(black dot) andn(grey line)[60]

    图 3消光谱:×为理论值;○为KK计算值[63]

    Figure 3.Extinction spectrum:× is theoretical value; ○ is KK calculation value[63]

    图 4(a) 和(b)分别是先验和重建的κn[60]

    Figure 4.(a) and (b) are priori and retrieved values ofκandn, respectively[60]

    图 5色散曲线[58]

    Figure 5.Dispersion curve[58]

    图 6χ(3)(3ω;ω,ω,ω)实部(a)和虚部(b)的测量值,KK和SKK计算值[67]

    Figure 6.Measured, KK and SKK values ofχ(3)(3ω;ω,ω,ω):(a)the real part; (b)the imaginary part[67]

    图 7一维周期介质散射谱相位差重建[69]:实验测量SPEBI方法(实线),KK关系(点画线),DSSKK关系(点),DMSKK(线段)

    Figure 7.Phase difference reconstruction of one-dimensional periodic dielectric scattering spectrum[69]:experimental measurement SPEBI method(solid line); KK relationship(dash dot); DSSKK relationship(dot); DMSKK relationship(line segment)

    图 8双向隐身KK平面介质[74]:(a)复介电常数ε(x)的谱,(b)和(c)分别是TE和TM极化波传输及反射系数谱

    Figure 8.Bi-directional stealth KK plane medium[74]: (a) is the spectrum of the complex permittivityε(x); (b) and (c) are TE and TM polarized wave propagation and reflection coefficient spectra, respectively

    图 9一维非均匀空间KK介质[77]。(a)印制卷绕金属丝制成的二维人工介质及几何参数;(b)具有91个单元的沿x方向的周期性条形结构;(c)利用全方位单极探针测量电场的实验系统;(d)测量及(e)仿真得到的2.4 GHz的电场分布;(f)y=0时,沿x方向的电场|Ez|的分布曲线

    Figure 9.1-dimensional non-uniform space KK medium[77]: (a)2-dimensional artificial medium made of printed rolled-up wire and its geometric parameters; (b)a periodic bar structure with 91 units along thexdirection; (c)an experimental system for measuring electric field by omnidirectional monopole probe; (d) and (e) are the electric field distributions of 2.4 GHz for measurement and simulation, respectively; (f)the distribution curve of electric field |Ez| along thexdirection asy=0

    图 10(a) 220 Gb/s单波长、单偏振、单探测器的基于KK关系的直接探测系统;(b)测量结果[80]

    Figure 10.(a)220 Gb/s direct detection system based on KK relationship with single wavelength, single polarization and single detector and (b)detection results[80]

    图 11偏振复用KK收发机[79]:(a)原理图;(b)实验结果

    Figure 11.(a)Schematic diagram and (b)experimental results for polarization multiplexing KK transceiver[79]

    图 12斯托克斯向量KK收发机[80]

    Figure 12.Stokes vector KK transceiver[80]

    表 1非线性效应及数学形式

    Table 1.Nonlinear effects and mathematical forms

    名称 数学形式
    二倍频上半,ω σijk(2)(2ω,ω)
    三倍频上半,ω σijkl(3)(3ω, 2ω,ω)
    和频上半,ω1ω2 σijk(2)(ω1+ω2,ω1)
    σijkl(3)(ω1+2ω2, 2ω2,ω2)
    差频 σijk(2)(ω1-ω2,ω1)
    上半,ω1; 下半,ω2 σijkl(3)(2ω1-ω2, 2ω1,ω1)
    ω2激发对ω1影响上半,ω1 σijkl(3)(ω1, 0,ω2)
    整流效应不解析 σijk(2)(0,ω)
    “自作用”效应不解析 σijkl(3)(ω, 0,ω)
    下载: 导出CSV
  • [1] KRONIG R D L. On the theory of dispersion of X-rays[J]. Journal of the Optical Society of America, 1926, 12(6):547-557.doi:10.1364/JOSA.12.000547
    [2] KRAMERS H A. La diffusion de la lumiere par les atomes[J]. Atti del Congresso Internazionale dei Fisici, 1927, 2:545-557.http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_astro-ph%2f0205136
    [3] BOHREN C F. What did Kramers and Kronig do and how did they do it?[J]. European Journal of Physics, 2010, 31(3):573-577.doi:10.1088/0143-0807/31/3/014
    [4] GRAF U. Introduction to Hyperfunctions and Their Integral Transforms:An Applied and Computational Approach[M]. Basel:Birkhäuser, 2010.
    [5] 汪璇, 曹万强.Hilbert变换及其基本性质分析[J].湖北大学学报(自然科学版), 2008, 30(1):53-55.doi:10.3969/j.issn.1000-2375.2008.01.014

    WANG X, CAO W Q. The Hilbert transform and its characters[J]. Journal of Hubei University(Nature Science), 2008, 30(1):53-55.(in Chinese)doi:10.3969/j.issn.1000-2375.2008.01.014
    [6] LUCARINI V, PEIPONEN K E, SAARINEN J J, et al.. Kramers-Kronig Relations in Optical Materials Research[M]. Berlin, Heidelberg:Springer-Verlag, 2005.
    [7] ARFKEN G B, WEBER H J. Mathematical Methods for Physicists[M]. 6th ed. Amsterdam:Elsevier Academic Press, 2005.
    [8] NUSSENZVEIG H M. Causality and Dispersion Relations[M]. Amsterdam:Elsevier Science, 1972.
    [9] ALTARELLI M, DEXTER D L, NUSSENZVEIG H M, et al.. Superconvergence and sum rules for the optical constants[J]. Physical Review B, 1972, 6(12):4502-4509.doi:10.1103/PhysRevB.6.4502
    [10] ALTARELLI M, SMITH D Y. Superconvergence and sum rules for the optical constants:physical meaning, comparison with experiment, and generalization[J]. Physical Review B, 1974, 9(4):1290-1298.doi:10.1103/PhysRevB.9.1290
    [11] LANDAU L D, LIFSHITZ E M. Electrodynamics of Continuous Media[M]. Oxford:Pergamon, 1960.
    [12] JAHODA F C. Fundamental absorption of barium oxide from its reflectivity spectrum[J]. Physical Review, 1957, 107(5):1261-1265.doi:10.1103/PhysRev.107.1261
    [13] BODE H W.Network Analysis and Feedback Amplifier Design[M]. New York: D. Van Nostrand Company, Inc., 1945.
    [14] PHILIPP H R, TAFT E A. Optical constants of germanium in the region 1 to 10 eV[J]. Physical Review, 1959, 113(4):1002-1005.doi:10.1103/PhysRev.113.1002
    [15] PHILIPP H R, TAFT E A. Kramers-Kronig analysis of reflectance data for diamond[J]. Physical Review, 1964, 136(5A):A1445-A1448.doi:10.1103/PhysRev.136.A1445
    [16] ANDERMANN G, CARON A, DOWS D A. Kramers-Kronig dispersion analysis of infrared reflectance bands[J]. Journal of the Optical Society of America, 1965, 55(10):1211-1216.
    [17] 牟媛, 吴振森, 张耿, 等.基于Kramers-Kronig关系建立金属太赫兹色散模型[J].物理学报, 2017, 66(12):120202.doi:10.7498/aps.66.120202

    MOU Y, WU Z S, ZHANG G, et al.. Establishment of THz dispersion model of metals based on Kramers-Kronig relation[J]. Acta Physica Sinica, 2017, 66(12):120202.(in Chinese)doi:10.7498/aps.66.120202
    [18] KOZIMA K, SUËTAKA W, SCHATZ P N. Optical constants of thin films by a Kramers-Kronig method[J]. Journal of the Optical Society of America, 1966, 56(2):181-184.doi:10.1364/JOSA.56.000181
    [19] 陈金金.Kramers-Kronig关系在光学中的应用[D].天津: 南开大学, 2011.

    CHEN J J. The applications of Kramers-Kronig relations in the optics[D]. Tianjin: Nankai University, 2011.(in Chinese)
    [20] PEIPONEN K E, ASAKURA T. Dispersion theory for two-phase layered-geometry nanocomposites[J]. Optical Review, 1999, 6(5):410-414.doi:10.1007/s10043-999-0410-z
    [21] PEIPONEN K E, MARTTI O A, SAARINEN J, et al.. Dispersion theory of liquids containing optically linear and nonlinear Maxwell Garnett nanoparticles[J]. Optical Review, 2001, 8(1):9-17.doi:10.1007/s10043-001-0009-5
    [22] BODE H W, .网络分析和反馈放大器设计[M].陈志刚, 译.北京: 人民邮电出版社, 1958.

    BODE H W.Network Analysis and Feedback Amplifier Design[M]. CHEN ZH G, trans. Beijing: People's Post and Telecommunications Press, 1958.(in Chinese)
    [23] GINER-SANZ J J, ORTEGA E M, PÉREZ-HERRANZ V. Monte carlo based quantitative Kramers-Kronig test for PEMFC impedance spectrum validation[J]. International Journal of Hydrogen Energy, 2015, 40(34):11279-11293.doi:10.1016/j.ijhydene.2015.03.135
    [24] VAN MEIRHAEGHE R L, DUTOIT E C, CARDON F, et al, . On the application of the Kramers-Kronig relations to problems concerning the frequency dependence of electrode impedance[J]. Electrochimica Acta, 1975, 20:995-999.doi:10.1016/0013-4686(75)85062-6
    [25] FANO W G, BOGGI S, RAZZITTE A C. Causality study and numerical response of the magnetic permeability as a function of the frequency of ferrites using Kramers-Kronig relations[J]. Physica B:Condensed Matter, 2008, 403(4):526-530.doi:10.1016/j.physb.2007.08.218
    [26] GREINER F. Classical Electrodynamics[M]. New York:Springer, 1998.
    [27] PEIPONEN K E, LUCARINI V, VARTIAINEN E M, et al.. Kramers-Kronig relations and sum rules of negative refractive index media[J]. The European Physical Journal B-Condensed Matter and Complex Systems, 2004, 41(1):61-65.doi:10.1140/epjb/e2004-00294-6
    [28] SZABÒ Z, PARK G H, HEDGE R, et al.. A unique extraction of metamaterial parameters based on Kramers-Kronig relationship[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(10):2646-2653.doi:10.1109/TMTT.2010.2065310
    [29] DING W W, SUN L Q, YI L Y, et al.. Dual-sideband heterodyne of dispersion spectroscopy based on phase-sensitive detection[J]. Applied Optics, 2016, 55(31):8698-8704.doi:10.1364/AO.55.008698
    [30] STOCKMAN M I. Criterion for negative refraction with low optical losses from a fundamental principle of causality[J]. Physical Review Letters, 2007, 98(17):177404.doi:10.1103/PhysRevLett.98.177404
    [31] MACKAY T G, LAKHTAKIA A. Comment on "criterion for negative refraction with low optical losses from a fundamental principle of causality"[J]. Physical Review Letters, 2007, 99(18):189701.doi:10.1103/PhysRevLett.99.189701
    [32] 彭文胜, 王建中.光电导效应及其应用探究[J].高等函授学报(自然科学版), 2007, 21(6):32-35.doi:10.3969/j.issn.1006-7353.2007.06.012

    PENG W SH, WANG J ZH. Photoconductivity effect and its application[J]. Journal of Higher Correspondence Education(Natural Sciences), 2007, 21(6):32-35.(in Chinese)doi:10.3969/j.issn.1006-7353.2007.06.012
    [33] OPPENEER P M, MAURER T, STICHT J, et al.. Ab initio calculated magneto-optical Kerr effect of ferromagnetic metals:Fe and Ni[J]. Physical Review B, 1992, 45(19):10924-10933.doi:10.1103/PhysRevB.45.10924
    [34] WANG C S, CALLAWAY J. Band structure of nickel:Spin-orbit coupling, the Fermi surface, and the optical conductivity[J]. Physical Review B, 1974, 9(11):4897-4907.doi:10.1103/PhysRevB.9.4897
    [35] RATHGEN H, KATSNELSON M I. Symmetry assumptions, kramers kronig transformation and analytical continuation in Ab initio calculations of optical conductivities[J]. Physica Scripta, 2004, T109:170-174.doi:10.1238/Physica.Topical.109a00170
    [36] (美)阿特伍德D T.软X射线与极紫外辐射的原理和应用[M].张杰, 译.北京: 科学出版社, 2003.

    ATTWOOD D T.Soft X-rays and Extreme Ultraviolet Radiation:Principles and Applications[M]. ZHANG J, trans. Beijing: Science Press, 2003.(in Chinese)
    [37] STONE K H, VALVIDARES S M, KORTRIGHT J B. Kramers-Kronig constrained modeling of soft X-ray reflectivity spectra:Obtaining depth resolution of electronic and chemical structure[J]. Physical Review B, 2012, 86(2):024102.doi:10.1103/PhysRevB.86.024102
    [38] MANGULIS V. Kramers-Kronig or Dispersion Relations in Acoustics relationship between ultrasonic attenuation and phase velocity[J]. The Journal of the Acoustical Society of America, 1964, 36(1):211-212.doi:10.1121/1.1918936
    [39] O'DONNELL M, JAYNES E T, MILLER J G. Kramers-Kronig relationship between ultrasonic attenuation and phase velocity[J]. The Journal of the Acoustical Society of America, 1981, 69(3):696-701.doi:10.1121/1.385566
    [40] ÁLVAREZ F J, KUC R. Dispersion relation for air via Kramers-Kronig analysis[J]. The Journal of the Acoustical Society of America, 2008, 124(2):EL57-EL61.doi:10.1121/1.2947631
    [41] YE ZH. Acoustic dispersion and attenuation in many spherical scatterer systems and the Kramers-Kronig relations[J]. Journal of the Acoustical Society of AmericaJ, 1997, 101(6):3299-3305.doi:10.1121/1.418311
    [42] BOYD R W.Nonlinear Optics[M]. 2nd ed. London: Academic, 2003.
    [43] LI CH. Nonlinear Optics:Principles and Applications[M]. Singapore:Springer, 2017.
    [44] HUTCHINGS D C, SHEIK-BAHAE M, HAGAN D J, et al.. Kramers-Kronig relations in nonlinear optics[J]. Optical and Quantum Electronics, 1992, 24(1):1-30.http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_physics%2f0302080
    [45] BASSANI F, SCANDOLO S. Dispersion relations and sum rules in nonlinear optics[J]. Physical Review B, 1991, 44(16):8446-8453.doi:10.1103/PhysRevB.44.8446
    [46] PEIPONEN K E. Sum rules for the nonlinear susceptibilities in the case of sum frequency generation[J]. Physical Review B, 1987, 35(8):4116-4117.doi:10.1103/PhysRevB.35.4116
    [47] BASSANI F, LUCARINI V. General properties of optical harmonic generation from a simple oscillator model[J]. Nuovo Cimento D, 1998, 20(7-8):1117-1125.doi:10.1007/BF03185520
    [48] BASSANI F, LUCARINI V. Asymptotic behaviour and general properties of harmonic generation susceptibilities[J]. The European Physical Journal B-Condensed Matter and Complex Systems, 2000, 17(4):567-573.doi:10.1007/PL00011069
    [49] SAARINEN J J. Sum rules for arbitrary-order harmonic generation susceptibilities[J]. The European Physical Journal B-Condensed Matter and Complex Systems, 2002, 30(4):551-557.doi:10.1140/epjb/e2002-00413-5
    [50] SHEIKBAHAE M, HUTCHINGS D C, HAGAN D J, et al.. Dispersion of bound electronic nonlinear refraction in solids[J]. IEEE Journal of Quantum Electronics, 1991, 27(6):1296-1309.doi:10.1109/3.89946
    [51] MILLER D A B, SEATON C T, PRISE M E, et al.. Band-gap-resonant nonlinear refraction in Ⅲ-V semiconductors[J]. Physical Review Letters, 1981, 47(3):197-200.doi:10.1103/PhysRevLett.47.197
    [52] CHEMLA D S, MILLER D A B, SMITH P W, et al.. Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures[J]. IEEE Journal of Quantum Electronics, 1984, QE-20(3):265-275.
    [53] LEE Y H, CHAVEZ-PIRSON A, KOCH S W, et al.. Room-temperature optical nonlinearities in GaAs[J]. Physical Review Letters, 1986, 57(19):2446-2449.doi:10.1103/PhysRevLett.57.2446
    [54] RIDENER JR F L, GOOD JR R H. Dispersion-relations for third-degree nonlinear-systems[J]. Physical Review B, 1974, 10(12):4980-4987.doi:10.1103/PhysRevB.10.4980
    [55] RIDENER JR F L, GOOD JR R H. Dispersion-relations for nonlinear-systems of arbitrary degree[J]. Physical Review B, 1975, 11(8):2768-2770.doi:10.1103/PhysRevB.11.2768
    [56] KADOR L. Kramers-Kronig relations in nonlinear optics[J]. Applied Physics Letters, 1995, 66(22):2938-2939.doi:10.1063/1.114235
    [57] KOGAN S M. On the electrodynamics of weakly nonlinear media[J]. Soviet Physics Jetp, 1963, 16(1):217-219.
    [58] BOWLDEN H J, WILMSHURST J K. Evaluation of the one-angle reflection technique for the determination of optical constants[J]. Journal of the Optical Society of America, 1963, 53(9):1073-1078.doi:10.1364/JOSA.53.001073
    [59] MYHRE C E L, CHRISTENSEN D H, NICOLAISEN F M, et al.. Spectroscopic study of aqueous H2SO4at different temperatures and compositions:variations in dissociation and optical properties[J]. The Journal of Physical Chemistry A, , 2003, 107(12):1979-1991.doi:10.1021/jp026576n
    [60] HERBIN H, PUJOL O, HUBERT P, et al.. New approach for the determination of aerosol refractive indices-Part I:theoretical bases and numerical methodology[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 200:311-319.doi:10.1016/j.jqsrt.2017.03.005
    [61] GOTTLIEB M. Optical properties of lithium fluoride in the infrared[J]. Journal of the Optical Society of America, 1960, 50(4):343-349.doi:10.1364/JOSA.50.000343
    [62] THOMAS D G, HOPFIELD J J. Exciton spectrum of cadmium sulfide[J]. Physical Review, 1959, 116(3):573-582.doi:10.1103/PhysRev.116.573
    [63] SPITZER W G, KLEINMAN D A. Infrared lattice bands of quartz[J]. Physical Review, 1961, 121(5):1324-1335.doi:10.1103/PhysRev.121.1324
    [64] SON H J, CHOI D H, PARK J S. Improved thickness estimation of liquid water using Kramers-Kronig relations for determination of precise optical parameters in terahertz transmission spectroscopy[J]. Optics Express, 2017, 25(4):4509-4518.doi:10.1364/OE.25.004509
    [65] BACHRACH R Z, BROWN F C. Exciton-optical properties of tlbr and tlcl[J]. Physical Review B, 1970, 1(2):818-831.doi:10.1103/PhysRevB.1.818
    [66] AHRENKIE R K. Modified Kramers-Kronig analysis of optical spectra[J]. Journal of the Optical Society of America, 1971, 61(12):1651-1655.doi:10.1364/JOSA.61.001651
    [67] LUCARINI V, SAARINEN J J, PEIPONEN K E. Multiply subtractive Kramers-Krönig relations for arbitrary-order harmonic generation susceptibilities[J]. Optics Communications, 2003, 218(4-6):409-414.doi:10.1016/S0030-4018(03)01259-8
    [68] PALMER K F, WILLIAMS M Z, BUDDE B A. Multiply subtractive Kramers-Kronig analysis of optical data[J]. Applied Optics, 1998, 37(13):2660-2673.doi:10.1364/AO.37.002660
    [69] GRANOT E, BEN-ADERET Y, STERNKLAR S. Differential multiply subtractive Kramers-Kronig relations[J]. Journal of the Optical Society of America B, 2008, 25(4):609-613.doi:10.1364/JOSAB.25.000609
    [70] BEN-ADERET Y, GRANOT E, STERNKLAR S, et al.. Spectral analysis of a one-dimensional scattering medium with the differential multiply subtractive Kramers-Kronig method[J]. Journal of the Optical Society of America B, 2009, 26(1):125-128.doi:10.1364/JOSAB.26.000125
    [71] HORSLEY S A R, ARTONI M, LA ROCCA G C. Spatial Kramers-Kronig relations and the reflection of waves[J]. Nature Photonics, 2015, 9(7):436-439.doi:10.1038/nphoton.2015.106
    [72] LONGHI S. Wave reflection in dielectric media obeying spatial Kramers-Kronig relations[J]. Europhysics Letters, 2015, 112(6):64001.doi:10.1209/0295-5075/112/64001
    [73] KOBER H. A note on Hilbert's operator[J]. Bulletin of the American Mathematical Society, 1942, 48(6):421-427.doi:10.1090/S0002-9904-1942-07688-9
    [74] LONGHI S. Bidirectional invisibility in Kramers-Kronig optical media[J]. Optics Letters, 2016, 41(16):3727-3730.doi:10.1364/OL.41.003727
    [75] PHILBIN T G. All-frequency reflectionlessness[J]. Journal of Optics, 2016, 18(1):01LT01.http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=30019534296ebe105e4635bcfaa2d372
    [76] KING C G, HORSLEY S A R, PHILBIN T G. Zero reflection and transmission in graded index media[J]. Journal of Optics, 2017, 19(8):085603.doi:10.1088/2040-8986/aa7783
    [77] YE D X, CAO C, ZHOU T Y, et al.. Observation of reflectionless absorption due to spatial Kramers-Kronig profile[J]. Nature Communications, 2017, 8(1):51.doi:10.1038/s41467-017-00123-4
    [78] MECOZZI A, ANTONELLI C, SHTAIF M. Kramers-Kronig coherent receiver[J]. Optica, 2016, 3(11):1220-1227.doi:10.1364/OPTICA.3.001220
    [79] ANTONELLI C, MECOZZI A, SHTAIF M. Kramers-Kronig PAM transceiver and two-sided polarization-multiplexed Kramers-Kronig transceiver[J]. Journal of Lightwave Technology, 2018, 36(2):468-475.doi:10.1109/JLT.2018.2796306
    [80] CHEN X, ANTONELLI C, CHANDRASEKHAR S, et al.. Kramers-Kronig receivers for 100-km datacenter interconnects[J]. Journal of Lightwave Technology, 2018, 36(1):79-89.doi:10.1109/JLT.2018.2793460
    [81] HOANG T M, SOWAILEM M Y S, ZHUGE Q B, et al.. Single wavelength 480 Gb/s direct detection over 80 km SSMF enabled by Stokes vector Kramers -Kronig transceiver[J]. Optics Express, 2017, 25(26):33534-33542.doi:10.1364/OE.25.033534
    [82] 汪小佳, 朱仁传, 洪亮.有航速Kramers-Kronig关系及浮体运动的间接时域法[J].中国造船, 2018, 59(2):9-23.doi:10.3969/j.issn.1000-4882.2018.02.002

    WANG X J, ZHU R CH, HONG L. Kramers-Kronig relations and frequency to time-domain transformation method for time domain calculation of floating body with forward speed[J]. Shipbuilding of China, 2018, 59(2):9-23.(in Chinese)doi:10.3969/j.issn.1000-4882.2018.02.002
  • 加载中
图(12)/ 表(1)
计量
  • 文章访问数:5200
  • HTML全文浏览量:1428
  • PDF下载量:763
  • 被引次数:0
出版历程
  • 收稿日期:2018-06-11
  • 修回日期:2018-07-13
  • 刊出日期:2019-04-01

目录

    /

      返回文章
      返回
        Baidu
        map