On-orbit dynamic scene real-time matching method and experiment of optical satellite
-
摘要:针对目前在轨卫星图像动态范围偏窄、直方图集中、灰度层次不够丰富、暗场景图像细节分辨能力不强的问题,提出一种卫星在轨动态场景实时匹配方法。首先,研究云检测和基于直方图特性的大气程辐射预估方法,消除它们对场景高、低动态测量的影响,并结合测光相机与成像相机辐射响应关系的标定,通过测光相机最多2次拍摄地面场景,实现场景动态范围的实时测量;然后,针对地面场景动态范围通常超出相机动态的问题,设计并提出了基于高亮度和低亮度匹配的相机与场景动态范围匹配方案,同时给出了不同情况下相机在轨参数解算方法。最后,通过无人机飞行试验对匹配方法进行了试验验证,结果表明:利用该方法可根据实时拍摄的地面景物合理地设置相机积分级数和增益,实现相机与场景动态范围的最佳匹配,有效灰阶提升优于100%,信息熵提升优于40%。Abstract:On the basis of on-orbit dynamic scene real-time matching of optical satellite, a new method is proposed to solve some key problems in satellite imaging, including the narrow dynamic range, the coarctate gray scale distribution, the deficiency of gray level, and the lack of detail resolution in dark scenes. Firstly, the cloud detection and atmospheric radiation prediction methods are presented based on histogram characteristic, in order to diminish their influence to high and low dynamic metrics of scenes. Combined with the radiation relationship calibration between photometric camera and imaging camera and image motion compensate, the real-time measurement of the dynamic range of the scene is achieved by imaging twice(not more than) using the photometric camera. Then, aiming at the problem that the scene dynamic range usually exceed the camera dynamic range, a matching method between the camera and scene dynamic range is proposed based on the high-and-low luminance matching schemes. Meanwhile, the camera parameters' calculation method in different situations is presented. Finally, the proposed matching method is verified by experiments of unmanned aerial vehicle(UAV). The results indicate that the method can achieve the best matching dynamic range by setting suitable integrating numbers and gains of the camera according to the actual imaging dynamic scenes, which can improve the effective gray scale and the image entropy by 100% and 40%, respectively.
-
表 1外场实验匹配前后的图像质量评价结果
Table 1.Image quality evaluation results of field experiment before and after matching
图像灰阶 图像熵 固定曝光 匹配后 提升/% 固定曝光 匹配后 提升/% 场景1 24.2 204.3 744.2 3.945 6.9490 76.1 场景2 15.9 153.8 867.3 3.496 6.6881 91.3 场景3 33.4 217.3 550.6 4.080 6.3607 55.9 场景4 42.9 232.7 442.4 4.571 7.1191 55.7 场景5 29.5 189.1 541.0 4.473 6.9889 56.2 场景6 38.6 209.0 441.5 4.043 6.4393 59.3 场景7 55.2 229.8 316.3 5.082 7.4558 46.7 场景8 50.2 182.6 263.7 3.762 6.0114 59.8 场景9 61.9 226.0 265.1 3.875 5.4261 40.0 场景10 16.0 157.5 884.4 3.633 6.9047 90.1 表 2仿真实验图像匹配前后的图像质量评价结果
Table 2.Image quality evaluation results of simulation experiment before and after matching
场景序号 图像灰阶 图像熵 运行时间/ms 固定曝光 匹配后 提升/% 固定曝光 匹配后 提升/% 1 96.3 204.3 112.2 5.148 7.117 38.2 234 2 147 224.1 51.89 5.09 6.22 22.2 281 3 32.4 251.8 677.1 3.82 6.73 76.1 249 4 104 234.3 123.7 6.3 7.55 19.8 218 5 47.3 248.2 424.8 4.88 7.5 53.6 234 6 55.9 221.4 295.7 4.22 6.43 52.3 234 7 73.5 209.0 184.4 4.89 6.45 31.9 234 8 67.6 208.0 207.4 5.09 6.77 33.0 249 9 64.6 196.3 203.6 5.37 7.18 33.7 266 10 30.7 209.8 582.3 4.62 7.33 58.6 234 -
[1] RICHELSON J. The keyhole satellite program[J].Journal of Strategic Studies, 1984, 7(2):121-153.http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/01402398408437182 [2] FLORINI A.The End of Secrecy[M]. FINEL B I, LORO K M. Power and Conflict in the Age of Transparency, New York: Palgrave Macmillan, 2000: 13-28. [3] BELWARD A S, SKØIEN J O. Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103:115-128.doi:10.1016/j.isprsjprs.2014.03.009 [4] SHEN H F, PENG L, YUE L W,et al.. Adaptive norm selection for regularized image restoration and super-resolution[J].IEEE Transactions on Cybernetics, 2016, 46(6):1388-1399.doi:10.1109/TCYB.2015.2446755 [5] MIN M, CAO G ZH, XU N,et al.. On-orbit spatial quality evaluation and image restoration of FengYun-3C/MERSI[J].IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12):6847-6858.doi:10.1109/TGRS.2016.2569038 [6] 智喜洋, 胡建明, 李文峰, 等.基于振动测量的卫星图像复原及要求[J].光学 精密工程, 2016, 24(10):632-639.http://www.eope.net/CN/Y2016/V24/I10s/632ZHI X Y, HU J M, LI W F,et al.. Satellite image restoration based on measured vibration information and requirements[J].Opt. Precision Eng., 2016, 24(10):632-639.(in Chinese)http://www.eope.net/CN/Y2016/V24/I10s/632 [7] 刘巧红, 李斌, 林敏.非凸混合总变分图像盲复原[J].西安电子科技大学学报, 2016, 43(2):120-125.doi:10.3969/j.issn.1001-2400.2016.02.021LIU Q H, LI B, LIN M. Non-convex hybrid total variation method for image blind restoration[J].Journal of Xidian University, 2016, 43(2):120-125.(in Chinese)doi:10.3969/j.issn.1001-2400.2016.02.021 [8] 马泽龙, 高慧斌, 余毅, 等.采用图像直方图特征函数的高速相机自动曝光方法[J].光学 精密工程, 2017, 25(4):1026-1035.http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201704026MA Z L, GAO H B, YU Y,et al.. Auto exposure control for high frame rate camera using image histogram feature function[J].Opt. Precision Eng., 2017, 25(4):1026-1035.(in Chinese)http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201704026 [9] KE P, JUNG C, FANG Y. Perceptual multi-exposure image fusion with overall image quality index and local saturation[J].Multimedia Systems, 2017, 23(2):239-250.http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=33f218325c9113f4a84c30c6e8c8f808 [10] 李卫中, 易本顺, 邱康, 等.细节保留的多曝光图像融合[J].光学 精密工程, 2016, 24(9):2283-2292.http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201609024LI W ZH, YI B SH, QIU K,et al.. Detail preserving multi-exposure image fusion[J].Opt. Precision Eng., 2016, 24(9):2283-2292.(in Chinese)http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201609024 [11] MENG X CH, SHEN H F, LI H F,et al.. Review of the pansharpening methods for remote sensing images based on the idea of meta-analysis:practical discussion and challenges[J].Information Fusion, 2019, 46:102-113.doi:10.1016/j.inffus.2018.05.006 [12] 薛旭成, 石俊霞, 吕恒毅, 等.空间遥感相机TDI CCD积分级数和增益的优化设置[J].光学 精密工程, 2011, 19(4):857-863.http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201104020XUE X CH, SHI J X, LV H Y,et al.. Optimal set of TDI CCD integration stages and gains of space remote sensing cameras[J].Opt. Precision Eng., 2011, 19(4):857-863.(in CHinese)http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201104020 [13] 周怀得, 刘海英, 徐东, 等.行间转移面阵CCD的TDI工作方式研究[J].光学 精密工程, 2008, 16(9):1629-1634.doi:10.3321/j.issn:1004-924X.2008.09.011ZHOU H D, LIU H Y, XU D,et al.. Study of TDI pattern for interline transfer progressive scan CCD[J].Opt. Precision Eng., 2008, 16(9):1629-1634.(in Chinese)doi:10.3321/j.issn:1004-924X.2008.09.011 [14] KING M D, KAUFMAN Y J, MENZEL W P,et al.. Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer(MODIS)[J].IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(1):2-27.doi:10.1109/36.124212 [15] 丁世飞, 靳奉祥, 王健, 等.一种新的基于信息论的PCA特征压缩算法[J].小型微型计算机系统, 2004, 25(4):694-697.doi:10.3969/j.issn.1000-1220.2004.04.051DING SH F, JIN F X, WANG J,et al.. New PCA feature compression algorithm based on information theory[J].Mini-Micro Systems, 2004, 25(4):694-697.(in Chinese)doi:10.3969/j.issn.1000-1220.2004.04.051 [16] MOUNTRAKIS G, IM J, OGOLE C. Support vector machines in remote sensing:a review[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(3):247-259.doi:10.1016/j.isprsjprs.2010.11.001 [17] SERGEJ T, MANTIUK R. Perceptual comparison of multi-exposure high dynamic range and single-shot camera RAW photographs[C]. Proceedings of the 13th International Conference on Image Analysis and Recognition. Póvoa de Varzim Portugal: Springer, 2016: 154-162. [18] POHL C, VAN GENDEREN J L. Review article multisensor image fusion in remote sensing:concepts, methods and applications[J].International Journal of Remote Sensing, 1998, 19(5):823-854.doi:10.1080/014311698215748 [19] LI CH F, BOVIK A C, WU X J. Blind image quality assessment using a general regression neural network[J].IEEE Transactions on Neural Networks, 2011, 22(5):793-799.doi:10.1109/TNN.2011.2120620