Highly sensitive down-conversion optical temperature-measurement material: NaGd(WO4)2: Yb3+/Er3+
-
摘要:基于Er 3+的两个热耦合能级发光强度测量的荧光强度比测温技术由于不受光谱损失和激发强度波动的影响,故能够提供准确的非接触式温度测量。但目前通用的荧光强度比技术都是基于上转换激发,而上转换材料效率较低,测温不准确。考虑到Er 3+能级可通过不同激发源来布居,本文利用高能光子激发的高效下转换光学测温方法,来解决上转换发光带来的问题,并以具有高测温灵敏度的钨酸盐NaGd(WO 4) 2为基质。研究发现,NaGd(WO 4) 2可成功用于下转换测温,Yb 3+/Er 3+共掺样品比Er 3+单掺拥有更高的测温灵敏度,且下转换测温灵敏度要高于上转换,在掺杂浓度为20% Yb 3+/1% Er 3+时,测温灵敏度高达344.6×10 -4K -1。这证明了NaGd(WO 4) 2:Yb 3+/Er 3+是理想的测温材料,也很好地验证了其在高灵敏度下转换测温的可行性,为荧光强度比技术的应用开辟了新的前景。Abstract:The fluorescence intensity ratio(FIR) thermometry based on the measurement of luminous intensities of two thermal coupling energy levels of Er 3+provides high precision for the non-contacted thermometry due to its independency of the spectral loss and excitation intensity fluctuations. However, the common FIR technology is based on the up-conversion(UC) excitation, and its low up-conversion efficiency makes the temperature measurement inaccurate. Considering that the thermalization of population in Er 3+can be achieved by different excitation sources, we utilize the efficient down-conversion(DC) optical temperature measurement with a high-energy photon excitation. A tungstate material of NaGd(WO 4) 2with high temperature sensitivity is used as the matrix material. It is found that NaGd(WO 4) 2can be successfully applied for the DC thermometry, and the temperature sensitivity of Yb 3+/Er 3+co-doped sample is higher than that of Er 3+single-doped one. In addition, the DC thermometry possesses higher sensitivity than UC, and the temperature sensitivity of 20%Yb 3+/1%Er 3+doped sample is up to 344.6×10 -4K -1, which demonstrates that NaGd(WO 4) 2:Yb 3+/Er 3+is an ideal temperature measuring material. More importantly, it further proves the feasibility of highly sensitive DC thermometry and opens up new prospects for the utilizations of FIR technology.
-
图 3(a) 1%Er3+单掺杂样品处于不同温度(303 K, 433 K and 563 K)时的980 nm激发上转换发射谱;(b)1%Yb3+/1%Er3+共掺杂样品处于不同温度(303 K, 433 K and 563 K)时的980 nm激发上转换发射谱。图中均对552 nm处的峰进行了归一化
Figure 3.(a)UC spectra of 1%Er3+-doped sample at different temperatures(303 K, 433 K and 563 K) excited with 980 nm; (b)UC spectra of 1%Yb3+/1%Er3+co-doped sample at different temperatures(303 K, 433 K and 563 K) excited with 980 nm. The spectra were normalized at 552 nm
图 4(a) 1%Er3+单掺杂样品在980 nm上转换激发下的荧光强度比R与绝对温度T之间的曲线关系;(b)1%Er3+单掺杂样品在980 nm上转换激发下Ln(R)与1/T之间的线性关系;(c)1%Er3+单掺杂样品在980 nm上转换激发下测温灵敏度S与绝对温度T之间的曲线关系;(d)1%Yb3+/1%Er3+共掺杂样品在980 nm上转换激发下的荧光强度比R与绝对温度T之间的曲线关系;(e)1%Yb3+/1%Er3+共掺杂样品在980 nm上转换激发下Ln(R)与1/T之间的线性关系;(f)1%Yb3+/1%Er3+共掺杂样品在980 nm上转换激发下测温灵敏度S与绝对温度T之间的曲线关系
Figure 4.(a)Relationship betweenRand absolute temperatureTof 1%Er3+-doped sample under 980 nm(UC) excitation; (b)Monolog plot ofRas a function of reciprocal absolute temperature of 1%Er3+-doped sample under 980 nm(UC) excitation; (c)Sensor sensitivity(S) as a function of the absolute temperature of 1%Er3+-doped sample under 980 nm(UC) excitation; (d)Relationship betweenRand absolute temperatureTof 1%Yb3+/1%Er3+co-doped sample under 980 nm(UC) excitation; (e)Monolog plot ofRas a function of reciprocal absolute temperature of 1%Yb3+/1%Er3+co-doped sample under 980 nm(UC) excitation; (f)Sensor sensitivity(S) as a function of absolute temperature of 1%Yb3+/1%Er3+co-doped sample under 980 nm(UC) excitation
图 6(a) 1%Er3+单掺杂样品处于不同温度(303 K, 433 K and 563 K)时的X射线激发下转换发射谱;(b)1%Yb3+/1%Er3+共掺杂样品处于不同温度(303 K, 433 K and 563 K)时的X射线激发下转换发射谱。图中均对552 nm处的峰进行了归一化
Figure 6.(a)DC spectra of 1%Er3+-doped sample at different temperatures(303 K, 433 K and 563 K) excited with X-ray; (b)DC spectra of 1%Yb3+/1%Er3+co-doped sample at different temperatures(303 K, 433 K and 563 K) excited with X-ray. The spectra were normalized at 552 nm
图 7(a) 1%Er3+单掺杂样品在X射线下转换激发下的荧光强度比R与绝对温度T之间的曲线关系;(b)1%Er3+单掺杂样品在X射线下转换激发下Ln(R)与1/T之间的线性关系;(c)1%Er3+单掺杂样品在X射线下转换激发下测温灵敏度S与绝对温度T之间的曲线关系;(d)1%Yb3+/1%Er3+共掺杂样品在X射线下转换激发下的荧光强度比R与绝对温度T之间的曲线关系;(e)1%Yb3+/1%Er3+共掺杂样品在X射线下转换激发下Ln(R)与1/T之间的线性关系;(f)1%Yb3+/1%Er3+共掺杂样品在X射线下转换激发下测温灵敏度S与绝对温度T之间的曲线关系
Figure 7.(a)Relationship betweenRand absolute temperatureTof 1%Er3+-doped sample under X-ray(DC) excitation; (b)monolog plot ofRas a function of reciprocal absolute temperatureTof 1%Er3+-doped sample under X-ray(DC) excitation; (c)sensor sensitivity(S) as a function of absolute temperature of 1%Er3+-doped sample under X-ray(DC) excitation; (d)relationship betweenRand absolute temperatureTof 1%Yb3+/1%Er3+co-doped sample under X-ray(DC) excitation; (e)monolog plot ofRas a function of reciprocal absolute temperature of 1%Yb3+/1%Er3+co-doped sample under X-ray(DC) excitation; (f)sensor sensitivity(S) as a function of the absolute temperature of 1%Yb3+/1%Er3+co-doped sample under X-ray(DC) excitation
图 8(a)x%Yb3+/1%Er3+(x=1, 5, 10, 15, 20)共掺杂样品在X射线下转换激发下的荧光强度比R与绝对温度T之间的曲线关系;(b)x%Yb3+/1%Er3+(x=1, 5, 10, 15, 20)共掺杂样品在X射线下转换激发下测温灵敏度S与绝对温度T之间的曲线关系
Figure 8.(a)Relationship betweenRand absolute temperatureTofx%Yb3+/1%Er3+(x=1, 5, 10, 15, 20) co-doped samples under X-ray(DC) excitation; (b)sensor sensitivity(S) as a function of absolute temperature forx%Yb3+/1%Er3+(x=1, 5, 10, 15, 20) co-doped samples under X-ray(DC) excitation
表 1Er3+在不同Yb3+/Er3+共掺基质中的最高测温灵敏度和计算荧光强度比中涉及到的参数B和ΔE/kB的大小,及每种材料达到最高测温灵敏度时所需温度和激发波长
Table 1.The fluorescence intensity ratio parameters and values of the maximum sensitivity of Er3+in different Yb3+/Er3+co-doped hosts, and temperatures for the maximum sensitivity as well as the excitation wavelength
Host B ΔE/kB(K) SMAX(K-1) T/K Excitation wavelength/nm Ref. NaZnPO4 12.8 1 218.4 0.005 7 612 980 28 Ba2LaF7 1.56 396.88 0.004 3 298 980 29 CaF2 6.79 1 263.6 0.003 1 625 980 30 KLu2F7 10.86 1 242 0.004 7 620 980 31 La2(WO4)3 18.12 1 018.39 0.009 7 510 980 18 NaY(WO4)2 29.2 1 073.6 0.014 5 530 980 19 NaLa(MO4)2 24.78 1 035 0.013 1 510 980 32 NaYF4 4.89 1 117.4 0.002 4 560 980 33 GdF3 3 1 127 0.004 575 980 34 NaGdF4 7.71 1 135 0.003 7 580 980 35 silicate glass 3.65 592.6 0.003 3 286 978 36 Yttrium silicate powders 3.65 817 0.005 6 400 975 37 NaGd(WO4)2 27.11 1 178.32 0.034 46 539 X-ray 本文 -
[1] ZHONG J S, CHEN D Q, PENG Y ZH,et al.. A review on nanostructured glass ceramics for promising application in optical thermometry[J].Journal of Alloys&Compounds, 2018, 763:34-48.http://www.sciencedirect.com/science/article/pii/S0925838818320863 [2] CAO J K, HU F F, CHEN L P,et al.. Optical thermometry based on up-conversion luminescence behavior of Er3+-doped KYb2F7nano-crystals in bulk glass ceramics[J].Journal of Alloys&Compounds, 2017, 693:326-331. [3] WU Y F, SUO H, HE D,et al.. Highly sensitive up-conversion optical thermometry based on Yb3+-Er3+co-doped NaLa(MoO4)2green phosphors[J].Materials Research Bulletin, 2018, 106:14-18.doi:10.1016/j.materresbull.2018.05.019 [4] TIAN Y Y, TIAN Y, HUANG P,et al.. Effect of Yb3+concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+co-doped YNbO4nanoparticles prepared via molten salt route[J].Chemical Engineering Journal, 2016, 297:26-34.doi:10.1016/j.cej.2016.03.149 [5] SUN ZH, LIU G F, FU Z L,et al.. Nanostructured La2O3:Yb3+/Er3+:temperature sensing, optical heating and bio-imaging application[J].Materials Research Bulletin, 2017, 92:39-45.doi:10.1016/j.materresbull.2017.04.005 [6] 郑龙江, 高晓阳, 徐伟, 等.Tm3+, Yb3+共掺微晶玻璃蓝色上转换荧光的温度特性[J].发光学报, 2012, 33(9):944-948.http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fgxb201209006ZHENG L J, GAO X Y, XU W,et al.. Temperature characteristic of blue up-conversion emission in Tm3+, Yb3+codoped oxyfluoride glass ceramic[J].Chinese Journal of Luminescence, 2012, 33(9):944-948.(in Chinese)http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fgxb201209006 [7] 吴中立, 吴红梅, 姚震, 等.GdNbO4:Er3+/Yb3+荧光粉的上转换发光与温度特性[J].发光学报, 2017, 38(9):1129-1135.http://d.old.wanfangdata.com.cn/Periodical/lzdzxb201105007WU ZH L, WU H M, YAO ZH,et al.. Upconversion luminescence and temperature characteristics of GdNbO4:Er3+/Yb3+phosphors[J].Chinese Journal of Luminescence, 2017, 38(9):1129-1135.(in Chinese)http://d.old.wanfangdata.com.cn/Periodical/lzdzxb201105007 [8] 刘国锋, 付作岭.上转换纳米粒子CaF:Er3+, Yb3+的合成及其温敏特性[J].发光学报, 2017, 38(2):133-138.http://www.cnki.com.cn/Article/CJFDTotal-FGXB201702001.htmLIU G F, FU Z L. Synthesis and temperature sensing of CaF:Er3+, Yb3+nanoparticles with upconversion fluorescence[J].Chinese Journal of Luminescence, 2017, 38(2):133-138.(in Chinese)http://www.cnki.com.cn/Article/CJFDTotal-FGXB201702001.htm [9] CAO J K, LI X M, WANG ZH X,et al.. Optical thermometry based on up-conversion luminescence behavior of self-crystallized K3YF6:Er3+glass ceramics[J].Sensors&Actuators B:Chemical, 2016, 224:507-513.http://www.sciencedirect.com/science/article/pii/S0925400515305530 [10] ZHOU J J, WEN SH H, LIAO J Y,et al.. Activation of the surface dark-layer to enhance upconversion in a thermal field[J].Nature Photonics, 2018, 12(3):154-158.doi:10.1038/s41566-018-0108-5 [11] CHENG X R, YANG K, WANG J K,et al.. Up-conversion luminescence and optical temperature sensing behaviour of Yb3+/Er3+codoped CaWO4material[J].Optical Materials, 2016, 58:449-453.doi:10.1016/j.optmat.2016.06.029 [12] XU W J, LI D Y, HAO H Y,et al.. Optical thermometry through infrared excited green upconversion in monoclinic phase Gd2(MoO4)3:Yb3+/Er3+phosphor[J].Optical Materials, 2018, 78:8-14.doi:10.1016/j.optmat.2018.02.001 [13] HAO Y X, LV SH CH, MA ZH J,et al.. Understanding differences in Er3+-Yb3+codoped glass and glass ceramic based on upconversion luminescence for optical thermometry[J].RSC Advances, 2018, 8(22):12165-12172.doi:10.1039/C8RA01245H [14] ZHENG Y H, YOU H P, LIU K,et al.. Facile selective synthesis and luminescence behavior of hierarchical NaY(WO4)2:Eu3+and Y6WO12:Eu3+[J].Cryst.Eng.Comm., 2011, 13(8):3001-3007.doi:10.1039/c1ce05107e [15] TIAN Y, CHEN B J, YU H Q,et al.. Controllable synthesis and luminescent properties of three-dimensional nanostructured CaWO4:Tb3+microspheres[J].Journal of Colloid&Interface Science, 2011, 360(2):586-592.http://www.sciencedirect.com/science/article/pii/S002197971100542X [16] DU P, LUO L H, YU J S. Upconversion emission, cathodo luminescence and temperature sensing behaviors of Yb3+ions sensitized NaY(WO4)2:Er3+phosphors[J].Ceramics International, 2016, 42(5):5635-5641.doi:10.1016/j.ceramint.2015.12.083 [17] XU W, ZHANG ZH G, CAO W W. Excellent optical thermometry based on short-wavelength upconversion emissions in Er3+/Yb3+codoped CaWO4[J].Optics Letters, 2012, 37(23):4865-4867.doi:10.1364/OL.37.004865 [18] YANG Y M, MI CH. Highly sensitive optical thermometry based on the upconversion fluorescence from Yb3+/Er3+codoped La2(WO4)3:Yb3+, Er3+Phosphor[J].Proc. of SPIE, 2013, 9044:904408.doi:10.1117/12.2036247 [19] ZOU Z SH, WU T, LU H,et al.. Structure, luminescence and temperature sensing in rare earth doped glass ceramics containing NaY(WO4)2nanocrystals[J].Rsc Advances, 2018, 8(14):7679-7686.doi:10.1039/C8RA00190A [20] YANG Y M, MI CH, JIAO F,et al.. A novel multifunctional upconversion phosphor: Yb3+/Er3+codoped La2S3[J].Journal of the American Ceramic Society, 2014, 97(6):1769-1775.doi:10.1111/jace.12822 [21] CHEN H Y, WANG F L, MOORE T L,et al.. Bright X-ray and up-conversion nanophosphors annealed using encapsulated sintering agents for bioimaging applications[J].Journal of Materials Chemistry B, 2017, 5(27):5412-5424.doi:10.1039/C7TB01289F [22] CHEN H M, SUN X L, WANG G D,et al.. LiGa5O8:Cr-based theranostic nanoparticles for imaging-guided X-ray induced photodynamic therapy of deep-seated tumors[J].Materials Horizons, 2017, 4(6):1092-1101.doi:10.1039/C7MH00442G [23] XUE ZH L, LI X L, LI Y B,et al.. X-ray activated near-infrared persistent luminescent probe for deep-tissue and renewable in vivo bioimaging[J].ACS Applied Materials&Interfaces, 2017, 9(27):22132-22142.http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0cfd6466217b6abdb5d88f9eabcd44e6 [24] MAURICE E, MONNOM G, DUSSARDIER B,et al.. Erbium-doped silica fibers for intrinsic fiber-optic temperature sensors[J].Applied Optics, 1995, 34(34):8019-8025.doi:10.1364/AO.34.008019 [25] SHINN M D, SIBLEY W A, DREXHAGE M G,et al.. Optical transitions of Er3+ions in fluorozirconate glass[J].Physical Review B, 1983, 27(11):6635-6648.doi:10.1103/PhysRevB.27.6635 [26] WADE S A, COLLINS S F, BAXTER G W. Fluorescence intensity ratio technique for optical fiber point temperature sensing[J].Journal of Applied Physics, 2003, 94(8):4743-4756.doi:10.1063/1.1606526 [27] MACIEL G S, MENEZES L D, GOMES A S L,et al.. Temperature sensor based on frequency upconversion in Er3+-doped fluoroindate Glass[J].IEEE Photonics Technology Letters, 1995, 7(12):1474-1476.doi:10.1109/68.477287 [28] CHEN Y, CHEN G H, LIU X Y,et al.. Enhanced up-conversion luminescence and optical thermometry characteristics of Er3+/Yb3+co-doped transparent phosphate glass-ceramics[J].Journal of Luminescence, 2018, 195:314-320.doi:10.1016/j.jlumin.2017.11.049 [29] YU H, LI S, QI Y SH,et al.. Optical thermometry based on up-conversion emission behavior of Ba2LaF7nano-crystals embedded in glass matrix[J].Journal of Luminescence, 2018, 194:433-439.doi:10.1016/j.jlumin.2017.10.014 [30] CAI J J, WEI X T, HU F F,et al.. Up-conversion luminescence and optical thermometry properties of transparent glass ceramics containing CaF2:Yb3+/Er3+nanocrystals[J].Ceramics International, 2016, 42(12):13990-13995.doi:10.1016/j.ceramint.2016.06.002 [31] CAO J K, CHEN W P, XU D K,et al.. Wide-range thermometry based on green up-conversion of Yb3+/Er3+co-doped KLu2F7transparent bulk oxyfluoride glass ceramics[J].Journal of Luminescence, 2018, 194:219-224.doi:10.1016/j.jlumin.2017.10.020 [32] HE D, GUO CH F, ZHOU SH SH,et al.. Synthesis and thermometric properties of shuttle-like Er3+/Yb3+co-doped NaLa(MoO4)2microstructures[J].CrystEngComm, 2015, 17(40):7745-7753.doi:10.1039/C5CE01216C [33] JIANG SH, ZENG P, LIAO L Q,et al.. Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4:Yb3+/Er3+nanocrystals[J].Journal of Alloys and Compounds, 2014, 617:538-541.doi:10.1016/j.jallcom.2014.08.080 [34] CHEN D Q, LIU SH, LI X Y,et al.. Gd-based oxyfluoride glass ceramics:phase transformation, optical spectroscopy and upconverting temperature sensing[J].Journal of the European Ceramic Society, 2017, 37(13):4083-4094.doi:10.1016/j.jeurceramsoc.2017.05.006 [35] CHEN D Q, WAN ZH Y, ZHOU Y,et al.. Bulk glass ceramics containing Yb3+/Er3+:β-NaGdF4, nanocrystals:phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior[J].Journal of Alloys&Compounds, 2015, 638:21-28.http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0234599393/ [36] LI CH R, DONG B, LI SH F,et al.. Er3+-Yb3+co-doped silicate glass for optical temperature sensor[J].Chemical Physics Letters, 2007, 443(4-6):426-429.doi:10.1016/j.cplett.2007.06.081 [37] RAKOV N, MACIEL G S. Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+co-doped yttrium silicate powders[J].Sensors&Actuators:B. Chemical, 2012, 164(1):96-100.https://www.sciencedirect.com/science/article/pii/S0925400512001116