留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续 辐照下的TiO2薄膜热传导性质

李代林,杨丹,崔纪琨,王宁,朱化凤

downloadPDF
李代林, 杨丹, 崔纪琨, 王宁, 朱化凤. 连续 辐照下的TiO2薄膜热传导性质[J]. , 2019, 12(3): 628-637. doi: 10.3788/CO.20191203.0628
引用本文: 李代林, 杨丹, 崔纪琨, 王宁, 朱化凤. 连续 辐照下的TiO2薄膜热传导性质[J]. , 2019, 12(3): 628-637.doi:10.3788/CO.20191203.0628
LI Dai-lin, YANG Dan, CUI Ji-kun, WANG Ning, ZHU Hua-feng. Heat conduction properties of TiO2 films irradiated by a continuous laser[J]. Chinese Optics, 2019, 12(3): 628-637. doi: 10.3788/CO.20191203.0628
Citation: LI Dai-lin, YANG Dan, CUI Ji-kun, WANG Ning, ZHU Hua-feng. Heat conduction properties of TiO2films irradiated by a continuous laser[J].Chinese Optics, 2019, 12(3): 628-637.doi:10.3788/CO.20191203.0628

连续 辐照下的TiO2薄膜热传导性质

doi:10.3788/CO.20191203.0628
基金项目:

国家自然科学基金重大项目61890964

国家重点研发计划项目2017YFC1404000

国家科技重大专项2017ZX05019-006

山东省重点研发计划项目GG201809250065

中央高校基本科研业务费专项资金19CX05003A-10

中央高校基本科研业务费专项资金18CX02046A

详细信息
    作者简介:

    李代林(1973-), 男, 山东青岛人, 副教授, 2004年于上海光学精密机械研究所获得光学工程博士学位, 现为中国石油大学(华东)理学院副教授, 主要从事偏振光相关方面的研究。E-mail:qd_ldl@upc.edu.cn

  • 中图分类号:O436

Heat conduction properties of TiO2films irradiated by a continuous laser

Funds:

Major Program of the National Natural Science Foundation of China61890964

National Key Research and Development Program Project2017YFC1404000

National Science and Technology Major Project2017ZX05019-006

Key Research and Development Project of Shandong ProvinceGG201809250065

Fundamental Research Funds for the Central Universities19CX05003A-10

Fundamental Research Funds for the Central Universities18CX02046A

More Information
  • 摘要:热传导规律的研究在 诱导薄膜材料改性等应用中有着重要的作用,本文针对二氧化碳 器辐照下的二氧化钛(TiO 2)薄膜表面的热效应进行了理论仿真和实验研究。首先,对具有粗糙上表面的TiO 2薄膜,利用有限元法构建了连续 作用下的TiO 2薄膜的立体模型并得到了其三维温度场分布。然后使用CO 2 器进行辐照实验,分析了辐照时间和功率等参数对TiO 2薄膜形貌、晶相以及颜色的影响。仿真表明,连续 辐照下TiO 2薄膜的瞬态温度场呈高斯分布,且与 功率、光斑半径、辐照时间等因素有关。当表面温度小于分解温度时,薄膜上表面最大平均温度与 功率满足线性关系,与光斑半径满足ExpAssoc非线性关系。实验结果表明, 辐照引起TiO 2薄膜材料表面粗糙度降低且颜色变化。 功率过小或辐照时间过短会导致有效作用面积小且不均匀,反之会产生热形变。结合仿真和实验可知使用功率为6 W,半径为3 mm的连续 辐照TiO 2薄膜10 s时取得的处理效果最优。

  • 图 1MATLAB构建的随机粗糙面型

    Figure 1.Random rough face constructed by MATLAB

    图 2几何模型

    Figure 2.Geometric model

    图 30.5、2.5、5、10 s时的上表面等温线及热量传导方向示意图

    Figure 3.Schematic diagram of isotherm and heat conduction direction on the upper surface at 0.5, 2.5, 5 and 10 s

    图 4不同 功率下上表面平均温度-时间曲线

    Figure 4.Average temperature-time curves of upper surface under different laser powers

    图 5 功率与上表面最大平均温度的线性拟合

    Figure 5.Linear fitting of laser power and maximum mean temperature on the upper surface

    图 6不同 功率下上表面中心线上温度分布曲线

    Figure 6.Temperature distribution curves of upper surface centerline under different laser powers

    图 7不同 光斑半径下上表面平均温度-时间曲线

    Figure 7.Average temperature-time curves of upper surface under different laser radius

    图 8 功率与上表面最大平均温度的线性拟合

    Figure 8.Linear fitting of laser power and maximum mean temperature on the upper surface

    图 9不同光斑半径下上表面中心线温度分布曲线

    Figure 9.Temperature distribution curves of upper surface centerline under different laser radius

    图 10TiO2薄膜显微图

    Figure 10.Micrograph of TiO2film

    图 11TiO2薄膜X射线衍射图谱

    Figure 11.X-ray diffraction patterns of TiO2film

    图 12不同 功率下的样品表面显微图

    Figure 12.Micrographs of sample surface under different laser powers

    图 13不同 功率下样品的X射线衍射图谱

    Figure 13.X-ray diffraction spectra of sample with different laser powers

    图 14不同辐照时间下样品表面显微图

    Figure 14.Micrographs of sample surface under different irradiation times

    图 15不同 辐照时间下样品的X射线衍射图谱

    Figure 15.X-ray diffraction spectra of sample under different laser irradiation times

    表 1特性参数

    Table 1.Characteristic parameters

    Parameters Abbr. Unit Value
    Constant pressure heat capacity C J·Kg-1·K-1 710
    Thickness d mm 0.1
    Length l mm 3.35
    Laser radius a mm 3
    Thermal conductivity k W·m-1·K-1 8.4
    Absorption coefficient α m-1 1 800
    Scattering coefficient σs m-1 2.647
    Density ρ kg·m-3 3 313
    Thermal radiation rate ε 1 0.1
    Surface heat transfer coefficient h W·cm-1·K-1 156
    下载: 导出CSV

    表 2高斯函数拟合公式及相关系数拟合参数

    Table 2.Gauss functions and their fitting parameters

    Laser power/W Equation R2
    a 3 y=317.5087+34.03*exp{-2*[(x+1.9595e-4)/5.0947]2} 0.999 1
    b 6 y=341.8283+68.0073*exp{-2*[(x+1.9607e-4)/5.0956]2} 0.999 1
    c 9 y=366.8283+101.9044*exp{-2*[(x+1.9626e-4)/5.0969]2} 0.999 1
    d 12 y=390.3105+135.7004*exp{-2*[(x+1.9633e-4)/5.0986]2} 0.999 1
    e 15 y=414.45+169.3716*exp{-2*[(x+1.9626e-4)/5.1007]2} 0.999 1
    f 18 y=438.5033+202.8924*exp{-2[(x+1.9634e-4)/5.1032]2} 0.999 1
    下载: 导出CSV

    表 3ExpAssoc函数及Allometricl函数形式及相应拟合参数

    Table 3.ExpAssoc function, Allometricl function and their fitting parameters

    Function name Equation R2
    ExpAssoc y=188.785 5-1 525.934 4*[1-exp(-x/1.130 9)] 0.999 3
    Allometricl y=983.785 4*x^(-669 9) 0.997 3
    下载: 导出CSV

    表 4拟合参数

    Table 4.Fitting parameters

    Laser radius/mm Equation R2
    a 1 y=356.5106+45.9932*exp{-2*[(x-7.6126e-4)/5.5986]2} 0.999 1
    b 2 y=347.7367+630.6741*exp{-2*[(x+5.7232e-5)/2.8963]2} 0.999 2
    c 3 y=356.8013+249.8764*exp{-2*[(x+0.0013)/4.2904]2} 0.999 4
    d 4 y=366.0817+101.9233*exp{-2*[(x+2.1173e-4)/5.0977]2} 0.999 1
    下载: 导出CSV
  • [1] GARESO P L, SAMPE N, PALENTEK V,et al.. Influence of annealing on Fe-doped TiO2powders using co-precipitation technique[J].AIP Conference Proceedings, 2017, 1801(1):020002.http://cn.bing.com/academic/profile?id=0f67a5130299ac54c134a499e908cdb3&encoded=0&v=paper_preview&mkt=zh-cn
    [2] SPINELLI P, MACCO B, VERSCHUUREN M A,et al.. Al2O3/TiO2nano-pattern antireflection coating with ultralow surface recombination[J].Applied Physics Letters, 2013, 102(23):233902.doi:10.1063/1.4810970
    [3] CHOU J C, YANG H Y, CHEN CH W. Glucose biosensor of ruthenium-doped TiO2sensing electrode by co-sputtering system[J].Microelectronics Reliability, 2010, 50(5):753-756.doi:10.1016/j.microrel.2010.01.025
    [4] MIRGHANI M, AL-MUBAIYEDH U A, NASSER M S,et al.. Experimental study and modeling of photocatalytic reduction of Pb2+by WO3/TiO2nanoparticles[J].Separation and Purification Technology, 2015, 141:285-293.doi:10.1016/j.seppur.2014.12.006
    [5] YAMAMOTO A, MIZUNO Y, TERAMURA K,et al.. Visible-light-assisted selective catalytic reduction of NO with NH3on porphyrin derivative-modified TiO2photocatalysts[J].Catalysis Science&Technology, 2015, 5(1):556-561.http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f03584ef1a2b187e89e7ba95fcfc58f9
    [6] HVHM S, ROSENFELD A, KRVGER J,et al.. Laser-induced periodic surface structures on zinc oxide crystals upon two-colour femtosecond double-pulse irradiation[J].Physica Scripta, 2017, 92(3):034003.doi:10.1088/1402-4896/aa5578
    [7] 袁志刚, 李亚国, 陈贤华, 等.光学元件改性处理对 损伤阈值的影响[J].光学 精密工程, 2016, 24(12):2956-2961.http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201612010

    YUAN ZH G, LI Y G, CHEN X H,et al.. Effect of chemical modification technology laser damage threshold of fused silica optical elements[J].Opt. Precision Eng., 2016, 24(12):2956-2961.(in Chinese)http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201612010
    [8] TRTICA M S, GAKOVIC B M, RADAK B B,et al.. Material surface modification by ns, ps and fs laser pulses[J].Opt. Precision Eng., 2011, 19(2):221-227.doi:10.3788/OPE.
    [9] 周海娇, 孙文军, 刘中洋.脉冲 辐照GaAs材料热效应研究[J].光子学报, 2014, 43(11):21-25.http://d.old.wanfangdata.com.cn/Periodical/gzxb201411005

    ZHOU H J, SUN W J, LIU ZH Y,et al.. Research of nonlinear absorption effect of pulse laser irradiation for GaAs[J].Acta Optica Sinica, 2014, 43(11):21-25.(in Chinese)http://d.old.wanfangdata.com.cn/Periodical/gzxb201411005
    [10] 王伟树.毫秒 辐照半导体材料的热力效应数值模拟[D].长春: 长春理工大学, 2014.http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2529054

    WANG W SH. Numerical simulation of thermal-mechanical effects during millisecond laser irradiate semiconductor materials[D]. Changchun: Changchun University of Science and Technology, 2014.(in Chinese).http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2529054
    [11] SAID-BACAR Z, LEROY Y, ANTONI F,et al.. Modeling of CW laser diode irradiation of amorphous silicon films[J].Applied Surface Science, 2011, 257(12):5127-5131.doi:10.1016/j.apsusc.2010.11.025
    [12] 张宏伟, 任妮, 薛红涛, 等.聚酰亚胺基底金属薄膜 刻蚀温度场分布[J].中国 , 2016, 43(5):94-101.http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201605014

    ZHANG H W, REN N, XUE H T,et al.. Temperature distribution for laser etching of metal thin films on polyimide substrate[J].Chinese Journal of Lasers, 2016, 43(5):94-101.(in Chinese)http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201605014
    [13] 周维军, 袁永华, 桂元珍, 等.脉冲 辐照TiO2/SiO2薄膜热效应研究[J].强 与粒子束, 2007, 19(1):23-26.http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qjgylzs200701006

    ZHOU W J, YUAN Y H, GUI Y ZH,et al.. Thermal effect of TiO2/SiO2film irradiated by pulse laser[J].High Power Laser and Particle Beams, 2007, 19(1):23-26.(in Chinese)http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qjgylzs200701006
    [14] 宋宏伟, 黄晨光. 辐照诱导的热与力学效应[J].力学进展, 2016, 46(1):201610.http://d.old.wanfangdata.com.cn/Periodical/lxjz201601010

    SONG H W, HUANG CH G. Progress in thermal-mechantical effects induced by laser[J].Advances in Mechanics, 2016, 46(1):201610.(in Chinese)http://d.old.wanfangdata.com.cn/Periodical/lxjz201601010
    [15] HOSSAIN M M, CHOWDHURY M H. Heat transfer simulations for pulsed laser annealing of silicon thin film[C]. Proceedings of IEEE 56th International Midwest Symposium on Circuits and Systems, IEEE, 2013: 732-735.https://www.researchgate.net/publication/261308482_Heat_transfer_simulations_for_pulsed_laser_annealing_of_silicon_thin_film
  • 加载中
图(15)/ 表(4)
计量
  • 文章访问数:1921
  • HTML全文浏览量:674
  • PDF下载量:146
  • 被引次数:0
出版历程
  • 收稿日期:2018-08-10
  • 修回日期:2018-10-12
  • 刊出日期:2019-06-01

目录

    /

      返回文章
      返回
        Baidu
        map