留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于鹰鸽量子博弈理论评价科研院所的科技自主创新能力

白雨虹,王延章,王雪华,Michael A Fiddy

downloadPDF
白雨虹, 王延章, 王雪华, Michael A Fiddy. 基于鹰鸽量子博弈理论评价科研院所的科技自主创新能力[J]. , 2011, 4(4): 340-354.
引用本文: 白雨虹, 王延章, 王雪华, Michael A Fiddy. 基于鹰鸽量子博弈理论评价科研院所的科技自主创新能力[J]. , 2011, 4(4): 340-354.
BAI Yu-hong, WANG Yan-zhang, WANG Xue-hua, Michael A Fiddy. Evaluation of independent innovation capability of institutes based on hawk-dove quantum games[J]. Chinese Optics, 2011, 4(4): 340-354.
Citation: BAI Yu-hong, WANG Yan-zhang, WANG Xue-hua, Michael A Fiddy. Evaluation of independent innovation capability of institutes based on hawk-dove quantum games[J].Chinese Optics, 2011, 4(4): 340-354.

基于鹰鸽量子博弈理论评价科研院所的科技自主创新能力

基金项目:

Supported by Key Program for International S&T Cooperation Projects of China(2011DFA50590)

详细信息
  • 中图分类号:F224.32; O431.2

Evaluation of independent innovation capability of institutes based on hawk-dove quantum games

More Information
    Author Bio:

    BAI Yu-hong(1964-), female, born in Hanyang in Hubei Province, professor. Her main research interests are optical intelligence analysis and research.

  • 摘要:科研院所的科技自主创新能力是推动国家科技进步和经济发展,应对国际经济危机的主要动力,创建科学、完善的科技创新能力评价方法有助于提升科研院所科技创新能力,并为国家制定科技创新决策提供参考依据。本文基于鹰鸽量子博弈理论,提出了一种评价科研院所自主创新能力的方法。介绍了量子博弈论的各基本要素在科技自主创新体系中所对应的物理内涵,根据鹰鸽量子博弈理论建立了科技自主创新能力评价模型,分析了纠缠度与收益矩阵之间的关系,确立了依靠各参与者在鹰鸽量子博弈中的纠缠度来表征科技自主创新能力的方法。给出了科研院所科技自主创新能力的量子博弈论解释,构建了科技自主创新能力评价指标体系,并确定了评价的合成计算方法,即量子纠缠度的计算方法。最后,以中科院部分研究所为实例进行了科技自主创新能力的评价,并利用主成份分析法和中物院的简单统计方法对得到的数据进行了对比分析,结果证明了提出的方法合理且有可操作性。

  • [1] AXELROD R.The Complexity of Cooperation:Agent-based Models of Conflict and Cooperation[M]. Princeton:Princeton University Press,1997. [2] BENJAMIN S C,HAYDEN P M. Multi-player quantum games[J].Phys. Rev. A,2001,64(3):030301. [3] DOPFER K.Evolutionary Economics:Program and Scope[M]. Boston:Kluwer Academic Publishers,2001. [4] DOSI G,NELSON R R. An introduction to evolutionary theories in economics[J].J. Evolutionary Economics,1994(4):153-172. [5] SQW. Economic analysis of scientific research publishing[R]. Cambridgeshire:Wellcome Trust,2003. [6] HODGSON G M.Economics and Evolution:Bringing Life Back into Economics[M]. Ann Arbor:University of Michigan Press,1993. [7] KNIELSEN K,JOHNSON B.Institutions and Economic Change[M]. Cheltenham:Edward Elgar Publishing Limited,1998. [8] FRIEDMAN D. On economic applications of evolutionary game theory[J].J. Evolutionary Economics,1998(8):15-43. [9] GUEVARA E. Quantum replicator dynamics[J].Physica A,2006,369(2):393-407. [10] GUEVARA E. Quantum games and the relationships between quantum mechanics and game theory[EB/OL].(2008-05-12)[2011-03-11].http://www.citeulike.org/user/Scis0000002/article/4890869. [11] IQBAL A,TOOR A H. Equilibria of replicator dynamics in quantum games[EB/OL].(2001-01-09)[2011-03-11].http://arxiv.org/abs/quant-ph/0106135. [12] GOLDENBERG L,VAIDMAN L,WEISNER S. Quantum gambling[J].Phys. Rev. Lett.,1999,82(16):3356-3359. [13] MEYER D A. Quantum strategies[J].Phys. Rev. Lett.,1999,82(5):1052-1055. [14] NAWAZ A,TOOR A H. Evolutionarily stable strategies in quantum hawk-dove game[J].Phys. Lett. A,2001,280(5-6):249-256. [15] EISERT J,WILKENS M,LEWENSTEIN M. Quantum games and quantum strategies[J].Phys. Rev. Lett.,83(15):3077-3080. [16] MARINATTO L,WEBER T. A quantum approach to static games of complete information[J].Phys. Lett. A.,2000,272(5-6):291-303. [17] PIOTROWSKI E W,SLADKOWSKI J. Quantum market games[J].Physica A,2002,312(1-2):208-217. [18] SALLY D. On sympathy and games[J].J. Economic Behavior and Organization,2001,44(1):1-30. [19] SMITH J M.Evolution and the Theory of Games[M]. Cambridge:Cambridge University Press,1982. [20] SMITH J M. Evolutionary game theory[J].Physica D,1986,22:43-49. [21] ZHA X W. Entanglement of quantum pure states[J].J. Xi'an University Post and Telecommunications,2003,8(1):56-58.
  • 加载中
计量
  • 文章访问数:3274
  • HTML全文浏览量:483
  • PDF下载量:1009
  • 被引次数:0
出版历程
  • 收稿日期:2011-03-12
  • 修回日期:2011-07-15
  • 刊出日期:2011-08-25

目录

    /

      返回文章
      返回
        Baidu
        map