All-optical routing control based on coherently induced high reflection band and high transmission band in a medium of cold atoms
-
摘要:以相干诱导光子带隙结构为工作基础,提出了一种可对两个弱光信号的传播路径同时进行动态调控的新型全光路由控制方案。利用描述光波在空间周期介质中相干散射的传输矩阵理论,结合描述单频 与多能级原子共振相互作用的密度矩阵方程,计算了作为控制媒介的相干驱动超冷原子系综的稳态反射光谱和稳态透射光谱。结果表明,通过改变两个较强相干 的空间模式、强度和频率等参数,可在探测跃迁共振频率附近建立反射率约为95%或者透射率约为95%的两个特殊频带。对这样的相干诱导高反射带和高透射带进行了实时动态调控,可根据需要引导两个不同频率的弱光信号进入指定的网络通道。该方案很好地满足了在量子信息处理领域对弱光信号进行全光路由控制时的低损耗和低形变要求。Abstract:On the basis of coherently induced photonic gap structures, a new all-optical routing control scheme is proposed to simultaneously control the propagation dynamics of two weak light signals. With the transfer-matrix method to describe the coherent scattering of light waves in periodic media and the density-matrix equations to describe the resonant interaction between monochromatic laser fields and multi-level atoms, the steady reflection and transmission spectra are calculated for a coherently driven ultra-cold atomic ensemble as the control medium. The results show that, by changing the spatial patterns, intensity, and frequencies of two strong laser fields, a pair of special frequency bands(with ~95% reflectivity or 95% transmissivity) can be first established near the probe resonance and then be manipulated at any time to induce two weak light signals of different frequencies into the desired network channels. This scheme well satisfies the basic requirements of low-deformation and low-loss for all-optical routing control of weak light signals in the field of quantum information processing.
-
[1] STEANE A. Quantum computing[J].Rep. Prog. Phys.,1998,61:117-173. [2] KIMBLE H J. The quantum internet[J].Nature,2008,453:1023-1030. [3] FLEISCHHAUER M,LUKIN M D. Dark-state polaritons in electromagnetically induced transparency[J].Phys. Rev. Lett.,2000,84:5094-5097. [4] LIU C,DUTTON Z,BEHROOZI C H,et al. Observation of coherent optical information storage in an atomic medium using halted light pulses[J].Nature,2001,409:490-493. [5] OTTAVIANI C,VITALI D,ARTONI M,et al.. Polarization qubit phase gate in driven atomic media[J].Phys. Rev. Lett.,2004,90:197902. [6] APPEL J,FIGUEROA E,KORYSTOV D,et al.. Quantum Memory for squeezed light[J].Phys. Rev. Lett.,2008,100:093602. [7] HAM B S. Experimental demonstration of all-optical 1*2 quantum routing[J].Appl. Phys. Lett.,2004,85:893-895. [8] VEWINGER F,APPEL J,FIGUEROA E,et al. Adiabatic frequency conversion of optical information in atomic vapor[J].Opt. Lett.,2007,32:2771-2773. [9] WANG H H,LI A J,DU D M,et al.. All-optical routing by light storage in a Pr3+∶ Y2SiO4crystal[J].Appl. Phys. Lett.,2008,93:221112. [10] GAO J W,WU J H,BA N,et al.. Efficient all-optical routing using dynamically induced transparency windows and photonic band gaps[J].Phys. Rev. A,2010,81:013804. [11] SAKODA K.Optical Properties of Photonic Crystals[M]. Berlin:Springer-verlag,2001. [12] YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J].Phys. Rev. Lett.,1987,58:2059-2062. [13] ARTONI M,LAROCCA G C,BASSANI F. Resonantly absorbing one-dimensional photonic crystals[J].Phys. Rev. E,2005,72:046604. [14] ARTONI M,LAROCCA G C. Optically tunable photonic stop bands in homogeneous absor-bing media[J].Phys. Rev. Lett.,2006,96:073905. [15] CUI C L,WU J H,GAO J W,et al.. Double photonic band-gaps dynamically induced in a tripod system of cold atoms[J].Opt. Express,2010,18:4538-4546.
点击查看大图
计量
- 文章访问数:3352
- HTML全文浏览量:297
- PDF下载量:1096
- 被引次数:0