留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

785 nm semiconductor laser with shallow etched gratings

YUE Yu-xin ZOU Yong-gang FAN Jie FU Xi-yao ZHANG Nai-yu SONG Ying-min HUANG Zhuo-er MA Xiao-hui

岳钰新, 邹永刚, 范杰, 付曦瑶, 张乃宇, 宋英民, 黄卓尔, 马晓辉. 具有浅刻蚀光栅的785 nm 半导体金宝搏188软件怎么用 器[J]. 188bet网站真的吗 . doi: 10.37188/CO.EN-2024-0019
引用本文: 岳钰新, 邹永刚, 范杰, 付曦瑶, 张乃宇, 宋英民, 黄卓尔, 马晓辉. 具有浅刻蚀光栅的785 nm 半导体金宝搏188软件怎么用 器[J]. 188bet网站真的吗 . doi: 10.37188/CO.EN-2024-0019
YUE Yu-xin, ZOU Yong-gang, FAN Jie, FU Xi-yao, ZHANG Nai-yu, SONG Ying-min, HUANG Zhuo-er, MA Xiao-hui. 785 nm semiconductor laser with shallow etched gratings[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0019
Citation: YUE Yu-xin, ZOU Yong-gang, FAN Jie, FU Xi-yao, ZHANG Nai-yu, SONG Ying-min, HUANG Zhuo-er, MA Xiao-hui. 785 nm semiconductor laser with shallow etched gratings[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0019

具有浅刻蚀光栅的785 nm 半导体金宝搏188软件怎么用 器

785 nm semiconductor laser with shallow etched gratings

doi: 10.37188/CO.EN-2024-0019
Funds: Supported by This work was financially supported by the Jilin Science and Technology Development Plan (No. 20210201030GX), the Science and Technology Innovation Outstanding Team Project of Jilin Province (No. 20220508138RC); The Natural Science Foundation of Chongqing (No. CSTB2022NSCQ-MSX0889, No. CSTB2022NSCQ-MSX0401).
More Information
    Author Bio:

    YUE Yu-xin is a Ph.D. candidate, currently pursuing his Ph.D. degree at the State Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology. His main research interests include device design and packaging of semiconductor lasers

    ZOU Yong-gang (1982—), male, researcher, Changchun University of Science and Technology. received his Ph.D. degree from Jilin University in 2009, majoring in condensed matter physics. He is mainly engaged in the research of optoelectronics technology and application. E-mail: zouyg@cust.edu.cn

    MA Xiao-hui, professor, doctoral supervisor, is the director of the State Key Laboratory of High Power Semiconductor Laser at Changchun University of Science and Technology. He is the overall expert of “Strategic Advanced Electronic Materials” of National Key R & D Program, the chief scientist of “173” project of Military Science and Technology Commission, the director of Optical Engineering Society of China, the member of National Optoelectronic Measurement Standardized Technical Committee, and the Distinguished Professor of Changbaishan Scholars of Jilin Province. He is also a special professor of ChangbaishanScholars in Jilin Province. His main research direction is optoelectronic technology and application. E-mail: mxh@cust.edu.cn

    Corresponding author: zouyg@cust.edu.cnmxh@cust.edu.cn
  • 摘要:

    我们提出了一种新型 785 nm 半导体金宝搏188软件怎么用 器件。在 P 侧外延中加入的薄限制层和模式扩展层结构,两者对光栅刻蚀深度的调节有很大影响。P 侧波导层的减薄使得光场偏向 N 侧包层。通过协调限制层的束缚效应,可以调节 P 侧的光限制因子。另一方面,模式扩展层的引入促进了 P 侧限制层上模式的扩展。这两个因素都有助于减少光栅蚀刻深度。与已报道的对称波导外延结构相比,新结构在确保足够反射强度和维持谐振的同时,大大减少了光栅的蚀刻深度。此外,为了提高器件的输出性能,还对新的外延结构进行了优化。在传统外延结构的基础上,增加了能量释放层和电子阻挡层,以提高电子复合效率。这种改进后的结构虽然增益面积较小,但输出性能却与对称波导相当。

     

  • Figure 1.  a) Epitaxial structure of the traditional chip b) epitaxial structure of the new chip c)structure of the DBR laser d) gain spectrum

    Figure 2.  Mode field distribution for different p-side waveguide thicknesses

    Figure 3.  (a) δn versus Γ (b) Waveguide refractive index, waveguide width versus divergence angle

    Figure 4.  (a) The relationship among different waveguide thicknesses and divergence angle and output power (b) Comparison of current density in the horizontal direction at different etching depths

    Figure 5.  (a) Refractive index of electron-blocking layer (b) output power at different components on the EBL

    Figure 6.  a) Light field distribution b) Energy band diagram of different aluminum components

    Figure 7.  Comparison of output power of different structures

    Figure 8.  a) Comparison of output power and b) electron concentration of different waveguide structures

    Figure 9.  Effect of different Al components of ERL on output power and light confinement factor

    Figure 10.  Simulated mode distribution for different Al contents. Inset shows their optical confinement factor on P-side and divergence angle

    Figure 11.  The refractive index and light field are distributed in the transverse direction

    Figure 12.  a) Refractive index distribution of the grating b) The relationship between different etching depths and reflectivity

    Table  1.   Parameter of each layer

    NumberLayerMaterialThickness/μmDoping/m−3
    1Top-claddingAl0.45Ga0.55As0.21e25
    2Mode expansionAl0.35Ga0.65As0.11e25
    3Lower-claddingAl0.45Ga0.55As0.11e25
    4waveguideAl0.45-0.4GaAs0.08none
    5Waveguide (EBL)Al0.42Ga0.58As0.02none
    6barrierAl0.32Ga0.68As0.015none
    7wellGaAs0.83P0.170.007none
    8barrierAl0.32Ga0.68As0.015none
    9Waveguide (ERL)Al0.3Ga0.7As0.1none
    10waveguideAl0.4-0.45GaAs0.8none
    11claddingAl0.45Ga0.55As0.41e25
    下载: 导出CSV
    Baidu
  • [1] SUMPF B, KABITZKE J, FRICKE J, et al. Dual-wavelength diode laser with electrically adjustable wavelength distance at 785 nm[J]. Optics Letters, 2016, 41(16): 3694-3697. doi: 10.1364/OL.41.003694
    [2] SUMPF B, FRICKE J, MAIWALD M, et al. Wavelength stabilized 785 nm DBR-ridge waveguide lasers with an output power of up to 215 mW[J]. Semiconductor Science and Technology, 2014, 29(4): 045025. doi: 10.1088/0268-1242/29/4/045025
    [3] LEI Y X, CHEN Y Y, GAO F, et al. 996 nm high-power single-longitudinal-mode tapered gain-coupled distributed feedback laser diodes[J]. Applied Optics, 2019, 58(23): 6426-6432. doi: 10.1364/AO.58.006426
    [4] TAN SH Y, ZHAI T, ZHANG R K, et al. Graded doping low internal loss 1060-nm InGaAs/AlGaAs quantum well semiconductor lasers[J]. Chinese Physics B, 2015, 24(6): 064211. doi: 10.1088/1674-1056/24/6/064211
    [5] E S Y, ZHOU Y L, ZHANG X, et al. Simulation and experimental research of a high-order Bragg grating semiconductor laser[J]. Applied Optics, 2021, 60(21): 6076-6079. doi: 10.1364/AO.432175
    [6] AL-MUHANNA A, ALHARBI A, SALHI A. Waveguide design optimization for long wavelength semiconductor lasers with low threshold current and small beam divergence[J]. Journal of Modern Physics, 2011, 2(4): 225-230. doi: 10.4236/jmp.2011.24031
    [7] HOLGUÍN-LERMA J A, NG T K, OOI B S. Narrow-line InGaN/GaN green laser diode with high-order distributed-feedback surface grating[J]. Applied Physics Express, 2019, 12(4): 042007. doi: 10.7567/1882-0786/ab0a57
    [8] E S Y, ZHOU Y L, ZHANG X, et al. High-order DBR semiconductor lasers: effect of grating parameters on grating performance[J]. Applied Optics, 2020, 59(28): 8789-8792. doi: 10.1364/AO.402699
    [9] ABBASI S P, GOODARZI M, MAHDIEH M H. Optimization of AlGaInAs quantum well in semiconductor lasers[J]. Optical and Quantum Electronics, 2022, 54(8): 517. doi: 10.1007/s11082-022-03914-2
    [10] PIKHTIN N A, SLIPCHENKO S O, SOKOLOVA Z N, et al. Internal optical loss in semiconductor lasers[J]. Semiconductors, 2004, 38(3): 360-367. doi: 10.1134/1.1682615
    [11] http://crosslight.com.cn. .
    [12] ERBERT G, BUGGE F, KNAUER A, et al. High-power tensile-strained GaAsP-AlGaAs quantum-well lasers emitting between 715 and 790 nm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(3): 780-784. doi: 10.1109/2944.788451
    [13] KAUL T, ERBERT G, MAAßDORF A, et al. Extreme triple asymmetric (ETAS) epitaxial designs for increased efficiency at high powers in 9xx-nm diode lasers[J]. Proceedings of SPIE, 2018, 10514: 105140A.
    [14] BOTEZ D. Design considerations and analytical approximations for high continuous-wave power, broad-waveguide diode lasers[J]. Applied Physics Letters, 1999, 74(21): 3102-3104. doi: 10.1063/1.124075
    [15] AN N, DONG X, SONG Q L, et al. Optimization for designing the waveguide of 980 nm AlGaAs/InGaAs semiconductor laser[J]. Optik, 2015, 126(22): 3477-3481. doi: 10.1016/j.ijleo.2015.07.045
    [16] XU B SH, QU K, WANG ZH Y, et al. Investigation of photoelectric performance of laser diode by regulation of p-waveguide layer thickness[J]. Optik, 2020, 200: 163458. doi: 10.1016/j.ijleo.2019.163458
    [17] ZUBOV F I, MAXIMOV M V, SHERNYAKOV Y M, et al. Suppression of sublinearity of light–current curve in 850 nm quantum well laser with asymmetric barrier layers[J]. Electronics Letters, 2015, 51(14): 1106-1108. doi: 10.1049/el.2015.1392
    [18] YANG J CH, ZHAO D G, JIANG D SH, et al. Performance of InGaN based green laser diodes improved by using an asymmetric InGaN/InGaN multi-quantum well active region[J]. Optics Express, 2017, 25(9): 9595-9602. doi: 10.1364/OE.25.009595
    [19] YANG J, ZHAO D G, LIU Z, et al. Suppression the leakage of optical field and carriers in GaN-based laser diodes by using InGaN barrier layers[J]. IEEE Photonics Journal, 2018, 10(4): 1503107.
    [20] LI X, ZHAO D G, JIANG D SH, et al. Suppression of electron leakage in 808 nm laser diodes with asymmetric waveguide layer[J]. Journal of Semiconductors, 2016, 37(1): 014007. doi: 10.1088/1674-4926/37/1/014007
    [21] YANG J, ZHAO D G, ZHU J J, et al. Effect of Mg doping concentration of electron blocking layer on the performance of GaN-based laser diodes[J]. Applied Physics B, 2019, 125(12): 235. doi: 10.1007/s00340-019-7343-4
    [22] YANG J CH, ZHAO D G, JIANG D SH, et al. Enhancing the performance of GaN based LDs by using low In content InGaN instead of GaN as lower waveguide layer[J]. Optics & Laser Technology, 2019, 111: 810-813.
    [23] YANG J J, FAN J, ZOU Y G, et al. Dual-wavelength operation of a tapered laser diode based on a composite DBR grating near 1.03 µm[J]. Optics Letters, 2022, 47(9): 2141-2144. doi: 10.1364/OL.458119
    [24] THEURER L S, SUMPF B, MAIWALD M, et al. Ten emitter dual-wavelength Y-branch DBR laser diode array emitting 1 W at 785 nm with a spectral emission width below 60 pm[J]. Journal of Physics Communications, 2021, 5(10): 105017. doi: 10.1088/2399-6528/ac2e55
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  23
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-26
  • 录用日期:  2024-08-22
  • 网络出版日期:  2025-01-22

目录

    /

    返回文章
    返回
    Baidu
    map