Volume 13 Issue 5
Sep.  2020
Turn off MathJax
Article Contents
ZHONG Li, SONG Di, JIAO Yue, LI Han, LI Guo-lin, JI Wen-hai. TDLAS detection of propylene with complex spectral features[J]. Chinese Optics, 2020, 13(5): 1044-1054. doi: 10.37188/CO.2019-0203
Citation: ZHONG Li, SONG Di, JIAO Yue, LI Han, LI Guo-lin, JI Wen-hai. TDLAS detection of propylene with complex spectral features[J]. Chinese Optics, 2020, 13(5): 1044-1054. doi: 10.37188/CO.2019-0203

TDLAS detection of propylene with complex spectral features

Funds:  Supported by Natural Science Foundation of Shandong Province (No. ZR2017LF023); Huimin Special Project of Qingdao Science and Technology Bureau (No. 17-3-3-89-nsh); Jilin University State Key Laboratory on Integrated Optoelectronics Open Research Grant (No. IOSKL2017KF01); China University of Petroleum (East China) Independent Innovation Program(No. 19CX02045A); Shandong Provincial Key R&D Projects ( No. 2019GHY112084, No. 2019GGX104103)
More Information
  • To satisfy the need for propylene measurement in the olefin production process, Tunable Diode Laser Absorption Spectroscopy (TDLAS) was studied to improve analytical performance. In this paper, a numerical simulation approach is proposed using absorbance from a spectral database to obtain the optimized design parameters, which is independent of spectral features. In the simulation, the effect of a wider linewidth laser on the absorbance profile was considered. Through the comparison of simulation results and experimental collection, the TDLAS-based propylene analysis apparatus was developed correspondingly. It has a 1 628.5 nm center wavelength broad-tuning DFB laser. A differential method was utilized in demodulated spectral acquisition to eliminate bias voltage. The multivariate linear regression model was employed to reduce the strong spectral interference from the background components in the analysis. Based on the simulated field test, the max relative error is 0.55% in the 0~1% range for the step test. For the long-term test, the standard deviation (1σ) is 9.3×10−6 for 0.2% propylene concentration. The best standard deviation is 1.33×10−6 at 221.9 s of integration time through Allen variance analysis. In the anti-interference test, the max error of 19.17×10−6 is demonstrated for 0.2% propylene concentration while methane and ethylene concentrations vary. The disadvantages of traditional methods such as the Gas Chromatogram (GC) and soft measurement methods are overcome by modulated absorption spectroscopy. The TDLAS system for heavy hydrocarbon detection with complex spectral features was demonstrated to have distinct advantages in precision, stability and interference suppression through multivariate regression modeling.

     

  • loading
  • AKAH A, AL-GHRAMI M. Maximizing propylene production via FCC technology[J]. Applied Petrochemical Research, 2015, 5(4): 377-392. doi: 10.1007/s13203-015-0104-3
    王振雷, 叶贞成, 钱锋. 丙烯精馏塔智能控制系统设计及应用[J]. 化工学报,2010,61(2):347-351.

    WANG ZH L, YE ZH CH, QIAN F. Design and implementation of intelligent control system for propylene distillation column[J]. CIESC Journal, 2010, 61(2): 347-351. (in Chinese)
    ZHANG F, WANG J H, TIAN D L, et al. Research on unregulated emissions from an alcohols-gasoline blend vehicle using FTIR, HPLC and GC-MS measuring methods[J]. SAE International Journal of Engines, 2013, 6(2): 1126-1137. doi: 10.4271/2013-01-1345
    KNIGHTON W B, HERNDON S C, FRANKLIN J F, et al. Direct measurement of volatile organic compound emissions from industrial flares using real-time online techniques: Proton transfer reaction mass spectrometry and tunable infrared laser differential absorption spectroscopy[J]. Industrial &Engineering Chemistry Research, 2012, 51(39): 12674-12684.
    韩明聪, 董俊国, 彭真, 等. 质子转移反应-飞行时间质谱检测呼出气体中痕量挥发性有机物[J]. 分析化学,2018,46(7):1109-1115. doi: 10.11895/j.issn.0253-3820.171532

    HAN M C, DONG J G, PENG ZH, et al. Proton transfer reaction time-of-flight mass spectrometry for detection of trace volatile organic compounds in breath[J]. Chinese Journal of Analytical Chemistry, 2018, 46(7): 1109-1115. (in Chinese) doi: 10.11895/j.issn.0253-3820.171532
    张强领, 邹雪, 梁渠, 等. 大气挥发性有机物实时在线监测的双极性质子转移反应质谱仪研制[J]. 分析化学,2018,46(4):471-478. doi: 10.11895/j.issn.0253-3820.171234

    ZHANG Q L, ZOU X, LIANG Q, et al. Development of dipolar proton transfer reaction mass spectrometer for real-time monitoring of volatile organic compounds in ambient air[J]. Chinese Journal of Analytical Chemistry, 2018, 46(4): 471-478. (in Chinese) doi: 10.11895/j.issn.0253-3820.171234
    张斌. 基于多神经网络结构的丙烯浓度软测量建模[J]. 计算机与应用化学,2014,31(3):374-376.

    ZHANG B. Soft sensor modeling for propylene concentration based on MNN[J]. Computers and Applied Chemistry, 2014, 31(3): 374-376. (in Chinese)
    齐汝宾, 尹新, 杨立, 等. 多成分有机气体的近红外光谱定量检测方法[J]. 光谱学与光谱分析,2008,28(12):2855-2858. doi: 10.3964/j.issn.1000-0593(2008)12-2855-04

    QI R B, YIN X, YANG L, et al. Application of NIR spectroscopy to multiple gas components identification[J]. Spectroscopy and Spectral Analysis, 2008, 28(12): 2855-2858. (in Chinese) doi: 10.3964/j.issn.1000-0593(2008)12-2855-04
    BENALIOUCHE F, BOUCHEFFA Y, THIBAULT-STARZYK F. In situ FTIR studies of propene adsorption over Ag- and Cu-exchanged Y zeolites[J]. Microporous and Mesoporous Materials, 2012, 147(1): 10-16. doi: 10.1016/j.micromeso.2011.04.040
    冯书香, 徐亮, 高闽光, 等. 基于太阳光谱的FTIR技术监测石油化工区丙烯的浓度分布[J]. 红外技术,2012,34(3):168-172.

    FENG SH X, XU L, GAO M G, et al. Application of Fourier transform infrared spectroscopy based on sun spectrum to monitor the distribution of propylene from petrochemical industry[J]. Infrared Technology, 2012, 34(3): 168-172. (in Chinese)
    HARWARD SR C N, BAREN R E, PARRISH M E. Determination of molecular parameters for 1, 3-butadiene and propylene using infrared tunable diode laser absorption spectroscopy[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2004, 60(14): 3421-3429. doi: 10.1016/j.saa.2003.11.049
    吕晓翠, 李国林, 季文海, 等. 基于特征提取的极限学习机算法在可调谐二极管金宝搏188软件怎么用 吸收光谱学中的应用[J]. 中国金宝搏188软件怎么用 ,2018,45(9):0911013. doi: 10.3788/CJL201845.0911013

    LV X C, LI G L, JI W H, et al. Application of feature-extraction-based extreme learning machine algorithm in tunable diode laser absorption spectroscopy[J]. Chinese Journal of Lasers, 2018, 45(9): 0911013. (in Chinese) doi: 10.3788/CJL201845.0911013
    朱晓睿, 卢伟业, 饶雨舟, 等. TDLAS直接吸收法测量CO2的基线选择方法[J]. 中国光学,2017,10(4):455-461. doi: 10.3788/co.20171004.0455

    ZHU X R, LU W Y, RAO Y ZH, et al. Selection of baseline method in TDLAS direct absorption CO2 measurement[J]. Chinese Optics, 2017, 10(4): 455-461. (in Chinese) doi: 10.3788/co.20171004.0455
    聂伟, 阚瑞峰, 杨晨光, 等. 可调谐二极管金宝搏188软件怎么用 吸收光谱技术的应用研究进展[J]. 中国金宝搏188软件怎么用 ,2018,45(9):0911001. doi: 10.3788/CJL201845.0911001

    NIE W, KAN R F, YANG CH G, et al. Research progress on the application of tunable diode laser absorption spectroscopy[J]. Chinese Journal of Lasers, 2018, 45(9): 0911001. (in Chinese) doi: 10.3788/CJL201845.0911001
    LI CH L, GUO X Q, JI W H, et al. Etalon fringe removal of tunable diode laser multi-pass spectroscopy by wavelet transforms[J]. Optical and Quantum Electronics, 2018, 50(7): 275. doi: 10.1007/s11082-018-1539-4
    臧益鹏, 聂伟, 许振宇, 等. 基于可调谐二极管金宝搏188软件怎么用 吸收光谱的痕量水汽测量[J]. 光学学报,2018,38(11):1130004.

    ZANG Y P, NIE W, XU ZH Y, et al. Measurement of trace water vapor based on tunable diode laser absorption spectroscopy[J]. Acta Optica Sinica, 2018, 38(11): 1130004. (in Chinese)
    GAO Y W, ZHANG Y J, CHEN D, et al. Laser absorption spectroscopy for detection of hydrogen fluoride using tunable diode laser[J]. Acta Photonica Sinica, 2015, 44(6): 0630003. doi: 10.3788/gzxb20154406.0630003
    曹天书. TDLAS气体检测中二次谐波的锁相放大器的研究[D]. 长春: 吉林大学, 2013.

    CAO T SH. Lock-in amplifier of second harmonic in the TDLAS gas detection[D]. Changchun: Jilin University, 2013. (in Chinese)
    刘铭晖, 董作人, 辛国锋, 等. 基于Voigt函数拟合的拉曼光谱谱峰判别方法[J]. 中国金宝搏188软件怎么用 ,2017,44(5):0511003. doi: 10.3788/CJL201744.0511003

    LIU M H, DONG Z R, XIN G F, et al. Discrimination method of raman spectral peaks based on Voigt function fitting[J]. Chinese Journal of Lasers, 2017, 44(5): 0511003. (in Chinese) doi: 10.3788/CJL201744.0511003
    KLUCZYNSKI P, GUSTAFSSON J, LINDBERG Å M, et al. Wavelength modulation absorption spectrometry-an extensive scrutiny of the generation of signals[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2001, 56(8): 1277-1354. doi: 10.1016/S0584-8547(01)00248-8
    ZHOU X. Diode-laser absorption sensors for combustion control[D]. Stanford: Stanford University, 2005.
    谢越, 李飞跃, 范行军, 等. 基于近红外光谱技术的生物炭组分分析[J]. 分析化学,2018,46(4):609-615. doi: 10.11895/j.issn.0253-3820.171084

    XIE Y, LI F Y, FAN X J, et al. Component analysis of biochar based on near infrared spectroscopy technology[J]. Chinese Journal of Analytical Chemistry, 2018, 46(4): 609-615. (in Chinese) doi: 10.11895/j.issn.0253-3820.171084
    ZHENG CH T, YE W L, SANCHEZ N P, et al. Infrared dual-gas CH4/C2H6 sensor using two continuous-wave interband cascade lasers[J]. IEEE Photonics Technology Letters, 2016, 28(21): 2351-2354. doi: 10.1109/LPT.2016.2594028
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article views(4409) PDF downloads(222) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    Baidu
    map