Citation: | DANG Wen-jia, LI Zhe, LI Yu-ting, LU Na, ZHANG Lei, TIAN Xiao, YANG Hui-hui. Recent advances in high-power continuous-wave ytterbium-doped fiber lasers[J].Chinese Optics, 2020, 13(4): 676-694.doi:10.37188/CO.2019-0208 |
[1] |
KOESTER C J, SNITZER E. Amplification in a fiber laser[J].
Applied Optics, 1964, 3(10): 1182-1186.
doi:10.1364/AO.3.001182
|
[2] |
DOMINIC V, MACCORMACK S, WAARTS R,
et al. 110 W fibre laser[J].
Electronics Letters, 1999, 35(14): 1158-1160.
doi:10.1049/el:19990792
|
[3] |
JEONG Y, SAHU J K, PAYNE D N,
et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power[J].
Optics Express, 2004, 12(25): 6088-6092.
doi:10.1364/OPEX.12.006088
|
[4] |
JEONG Y C, BOYLAND A J, SAHU J K,
et al. Multi-kilowatt single-mode ytterbium-doped large-core fiber laser[J].
Journal of the Optical Society of Korea, 2009, 13(4): 416-422.
doi:10.3807/JOSK.2009.13.4.416
|
[5] |
WIRTH C, SCHMIDT O, KLINER A,
et al. High-power tandem pumped fiber amplifier with an output power of 2.9 kW[J].
Optics Letters, 2011, 36(16): 3061-3063.
doi:10.1364/OL.36.003061
|
[6] |
INJEYAN H, GOODNO G D.
High-Power Laser Handbook[M]. New York: McGraw-Hill Professional, 2011.
|
[7] |
YU H B, KLINER D A V, LIAO K H,
et al. 1.2-kW single-mode fiber laser based on 100-W high-brightness pump diodes[J].
Proceedings of SPIE, 2012, 8237: 82370G.
doi:10.1117/12.908454
|
[8] |
O'CONNOR M, GAPONTSEV V, FOMIN V, et al.. Power scaling of SM fiber lasers toward 10 kW[C].
Conference on Lasers and Electro-Optics,
Optical Society of America, 2009: CThA3.
|
[9] |
SHINER B. The impact of fiber laser technology on the world wide material processing market[C].
CLEO:
Applications and Technology,
Optical Society of America, 2013: AF2J. 1.
|
[10] |
DAWSON J W, MESSERLY M J, BEACH R J,
et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J].
Optics Express, 2008, 16(17): 13240-13266.
doi:10.1364/OE.16.013240
|
[11] |
OTTO H J, JAUREGUI C, LIMPERT J,
et al. Average power limit of fiber-laser systems with nearly diffraction-limited beam quality[J].
Proceedings of SPIE, 2016, 9728: 97280E.
|
[12] |
王立军, 彭航宇, 张俊. 大功率半导体 合束进展[J]. 中国光学,2015,8(4):517-534.
doi:10.3788/co.20150804.0517
WANG L J, PENG H Y, ZHANG J. Advance on high power diode laser coupling[J].
Chinese Optics, 2015, 8(4): 517-534. (in Chinese)
doi:10.3788/co.20150804.0517
|
[13] |
HU M, KE W W, YANG Y F,
et al. Low threshold Raman effect in high power narrowband fiber amplifier[J].
Chinese Optics Letters, 2016, 14(1): 011901.
doi:10.3788/COL201614.011901
|
[14] |
HANSEN K R, ALKESKJOLD T T, BROENG J,
et al. Theoretical analysis of mode instability in high-power fiber amplifiers[J].
Optics Express, 2013, 21(2): 1944-1971.
doi:10.1364/OE.21.001944
|
[15] |
BROWN D C, HOFFMAN H J. Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers[J].
IEEE Journal of Quantum Electronics, 2001, 37(2): 207-217.
doi:10.1109/3.903070
|
[16] |
住村和彦, 西浦匡则. 图解光纤 器入门[M]. 宋鑫, 译. 北京: 机械工业出版社, 2013: 74-84.
KAZUHIKO SUMIMURA.
Graphical Introduction to Fiber Lasers[M]. SONG X, trans. Beijing: China Machine Press, 2013: 74-84. (in Chinese)
|
[17] |
JAUREGUI C, LIMPERT J, TUNNERMANN A. High-power fibre lasers[J].
Nature Photonics, 2013, 7(11): 861-867.
doi:10.1038/nphoton.2013.273
|
[18] |
TER-MIKIRTYCHEV V V.
Fundamentals of Fiber Lasers and Fiber Amplifiers[M]. Cham: Springer, 2014.
|
[19] |
阿戈沃 G. 非线性光纤光学[M]. 贾东方, 葛春风, 王肇颖, 等, 译. 5版. 北京: 电子工业出版社, 2014: 204-206.
AGRAWAL G.
Nonlinear Fiber Optics[M]. JIA D F, GE CH F, WANG ZH Y,
et al, trans. 5th ed. Beijing: Publishing House of Electronics Industry, 2014: 204-206. (in Chinese)
|
[20] |
AGRAWAL G P. Nonlinear fiber optics: its history and recent progress[Invited][J].
Journal of the Optical Society of America B, 2011, 28(12): A1-A10.
doi:10.1364/JOSAB.28.0000A1
|
[21] |
RICHARDSON D J, NILSSON J, CLARKSON W A. High power fiber lasers: current status and future perspectives[Invited][J].
Journal of the Optical Society of America B, 2010, 27(11): B63-B92.
doi:10.1364/JOSAB.27.000B63
|
[22] |
陈吉欣, 隋展, 陈福深, 等. 高功率双包层光纤 器的受激拉曼散射[J]. 中国 ,2006,33(3):298-302.
doi:10.3321/j.issn:0258-7025.2006.03.003
CHEN J X, SUI ZH, CHEN F SH,
et al. Stimulated Raman scattering in high power double clad fiber laser[J].
Chinese Journal of Lasers, 2006, 33(3): 298-302. (in Chinese)
doi:10.3321/j.issn:0258-7025.2006.03.003
|
[23] |
JAIN D, JUNG Y M, BARUA P,
et al. Demonstration of ultra-low NA rare-earth doped step index fiber for applications in high power fiber lasers[J].
Optics Express, 2015, 23(6): 7407-7415.
doi:10.1364/OE.23.007407
|
[24] |
LIMPERT J, LIEM A, REICH M,
et al. Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier[J].
Optics Express, 2004, 12(7): 1313-1319.
doi:10.1364/OPEX.12.001313
|
[25] |
GU G C, KONG F T, HAWKINS T W,
et al. Impact of fiber outer boundaries on leaky mode losses in leakage channel fibers[J].
Optics Express, 2013, 21(20): 24039-24048.
doi:10.1364/OE.21.024039
|
[26] |
JAIN D, JUNG Y, KIM J,
et al. Robust single-mode all-solid multi-trench fiber with large effective mode area[J].
Optics Letters, 2014, 39(17): 5200-5203.
doi:10.1364/OL.39.005200
|
[27] |
胡姝玲, 张春熹, 高春清, 等. 包层抽运掺镱光纤 器中受激拉曼散射和受激布里渊散射效应[J]. 中国 ,2008,35(1):6-10.
doi:10.3321/j.issn:0258-7025.2008.01.002
HU SH L, ZHANG CH X, GAO CH Q,
et al. Stimulated Raman scattering and stimulated Brillouin scattering effects in ytterbium doped double clad fiber laser[J].
Chinese Journal of Lasers, 2008, 35(1): 6-10. (in Chinese)
doi:10.3321/j.issn:0258-7025.2008.01.002
|
[28] |
SCHREIBER T, LIEM A, FREIER E,
et al. Analysis of stimulated Raman scattering in CW kW fiber oscillators[J].
Proceedings of SPIE, 2014, 8961: 89611T.
|
[29] |
LIU W, MA P F, LV H B,
et al. General analysis of SRS-limited high-power fiber lasers and design strategy[J].
Optics Express, 2016, 24(23): 26715-26721.
doi:10.1364/OE.24.026715
|
[30] |
XU H Y, JIANG M, SHI CH,
et al. Spectral shaping for suppressing stimulated-Raman-scattering in a fiber laser[J].
Applied Optics, 2017, 56(12): 3538-3542.
doi:10.1364/AO.56.003538
|
[31] |
JANSEN F, NODOP D, JAUREGUI C,
et al. Modeling the inhibition of stimulated Raman scattering in passive and active fibers by lumped spectral filters in high power fiber laser systems[J].
Optics Express, 2009, 17(18): 16255-16265.
doi:10.1364/OE.17.016255
|
[32] |
NODOP D, JAUREGUI C, JANSEN F,
et al. Suppression of stimulated Raman scattering employing long period gratings in double-clad fiber amplifiers[J].
Optics Letters, 2010, 35(17): 2982-2984.
doi:10.1364/OL.35.002982
|
[33] |
BOCK V, SCHULTZE T, LIEM A,
et al.. The influence of different seed sources on Stimulated Raman Scattering in fiber amplifiers[C].
European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference.
Optical Society of America, 2017: CJ_4_3.
|
[34] |
WANG W L, LENG J Y, GAO Y,
et al. Influence of temporal characteristics on the power scalability of the fiber amplifier[J].
Laser Physics, 2015, 25(3): 035101.
doi:10.1088/1054-660X/25/3/035101
|
[35] |
LIU W, MA P F, LV H B,
et al. Investigation of stimulated Raman scattering effect in high-power fiber amplifiers seeded by narrow-band filtered superfluorescent source[J].
Optics Express, 2016, 24(8): 8708-8717.
doi:10.1364/OE.24.008708
|
[36] |
ZERVAS M N. High power ytterbium-doped fiber lasers—fundamentals and applications[J].
International Journal of Modern Physics B, 2014, 28(12): 1442009.
doi:10.1142/S0217979214420090
|
[37] |
BEIER F, HEINZIG M, WALBAUM T,
et al.. Determination of thermal load from core temperature measurements in single mode ytterbium-doped fiber amplifiers[C].
Advanced Solid State Lasers,
Optical Society of America, 2015: ATh2A. 23.
|
[38] |
花景田, 陈宝玖, 孙佳石, 等. 稀土掺杂材料的上转换发光[J]. 中国光学与应用光学,2010,3(4):301-309.
doi:10.3969/j.issn.2095-1531.2010.04.001
HUA J T, CHEN B J, SUN J SH,
et al. Introduction to up-conversion luminescence of rare earth doped materials[J].
Chinese Journal of Optics and Applied Optics, 2010, 3(4): 301-309. (in Chinese)
doi:10.3969/j.issn.2095-1531.2010.04.001
|
[39] |
ŠUŠNJAR P, AGREŽ V, PETKOVŠEK R. Photodarkening as a heat source in ytterbium doped fiber amplifiers[J].
Optics Express, 2018, 26(5): 6420-6426.
doi:10.1364/OE.26.006420
|
[40] |
ZHANG H W, ZHOU P, WANG X L, et al.. Fiber fuse effect in high-power double-clad fiber laser[C]. 2013
Conference on Lasers and Electro-Optics Pacific Rim,
IEEE, 2013: 1-2.
|
[41] |
DONG L. Thermal lensing in optical fibers[J].
Optics Express, 2016, 24(17): 19841-19852.
doi:10.1364/OE.24.019841
|
[42] |
JAUREGUI C, EIDAM T, OTTO H J,
et al. Physical origin of mode instabilities in high-power fiber laser systems[J].
Optics Express, 2012, 20(12): 12912-12925.
doi:10.1364/OE.20.012912
|
[43] |
TAO R M, MA P F, WANG X L,
et al. Study of wavelength dependence of mode instability based on a semi-analytical model[J].
IEEE Journal of Quantum Electronics, 2015, 51(8): 1600106.
|
[44] |
CODEMARD C A, SAHU J K, NILSSON J. Tandem cladding-pumping for control of excess gain in ytterbium-doped fiber amplifiers[J].
IEEE Journal of Quantum Electronics, 2010, 46(12): 1860-1869.
doi:10.1109/JQE.2010.2076408
|
[45] |
SHI W, FANG Q, ZHU X SH,
et al. Fiber lasers and their applications[Invited][J].
Applied Optics, 2014, 53(28): 6554-6568.
doi:10.1364/AO.53.006554
|
[46] |
张雪霞, 葛廷武, 丁星, 等. 分布式抽运连续光纤 器研究[J]. 发光学报,2016,37(9):1071-1075.
doi:10.3788/fgxb20163709.1071
ZHANG X X, GE T W, DING X,
et al. Study of continuous fiber laser with distributed pump structure[J].
Chinese Journal of Luminescence, 2016, 37(9): 1071-1075. (in Chinese)
doi:10.3788/fgxb20163709.1071
|
[47] |
LIMPERT J, STUTZKI F, JANSEN F,
et al. Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation[J].
Light:
Science&
Applications, 2012, 1(4): e8.
|
[48] |
MA X Q, ZHU CH, HU I N,
et al. Single-mode chirally-coupled-core fibers with larger than 50 μm diameter cores[J].
Optics Express, 2014, 22(8): 9206-9219.
doi:10.1364/OE.22.009206
|
[49] |
MASHIKO Y, NGUYEN H K, KASHIWAGI M,
et al. 2 kW single-mode fiber laser with 20-m long delivery fiber and high SRS suppression[J].
Proceedings of SPIE, 2016, 9728: 972805.
doi:10.1117/12.2212049
|
[50] |
IKOMA S, NGUYEN H K, KASHIWAGI M,
et al. 3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing[J].
Proceedings of SPIE, 2017, 10083: 100830Y.
|
[51] |
SHIMA K, IKOMA S, UCHIYAMA K,
et al. 5-kW single stage all-fiber Yb-doped single-mode fiber laser for materials processing[J].
Proceedings of SPIE, 2018, 10512: 105120C.
|
[52] |
MÖLLER F, KRÄMER R G, MATZDORF C, et al.. Comparison between bidirectional pumped Yb-doped all-fiber single-mode amplifier and oscillator setup up to a power level of 5 kW[C].
Advanced Solid State Lasers,
Optical Society of America, 2018: AM2A. 3.
|
[53] |
YANG B L, ZHANG H W, WANG X L,
et al. Mitigating transverse mode instability in a single-end pumped all-fiber laser oscillator with a scaling power of up to 2 kW[J].
Journal of Optics, 2016, 18(10): 105803.
doi:10.1088/2040-8978/18/10/105803
|
[54] |
YANG B L, ZHANG H W, SHI CH,
et al. Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 2.5 kW employing bidirectional-pump scheme[J].
Optics Express, 2016, 24(24): 27828-27835.
doi:10.1364/OE.24.027828
|
[55] |
YANG B L, ZHANG H W, SHI CH,
et al. 3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability[J].
Journal of Optics, 2018, 20(2): 025802.
doi:10.1088/2040-8986/aa9ec0
|
[56] |
YANG B L, SHI CH, ZHANG H W,
et al. Monolithic fiber laser oscillator with record high power[J].
Laser Physics Letters, 2018, 15(7): 075106.
doi:10.1088/1612-202X/aac19f
|
[57] |
YING H Y, YU Y, CAO J Q,
et al. 2 kW pump-light-stripper-free distributed side-coupled cladding-pumped fiber oscillator[J].
Laser Physics Letters, 2017, 14(6): 065102.
doi:10.1088/1612-202X/aa6dc8
|
[58] |
CHEN H, CAO J Q, HUANG ZH H,
et al.. 4-kilowatt all-fiber distributed side-pumped oscillators[C].
Advanced Solid State Lasers,
Optical Society of America, 2018: AM6A. 18.
|
[59] |
KUHN S, HEIN S, HUPEL C,
et al.. Towards monolithic single-mode Yb-doped fiber amplifiers with > 4 kW average power[C].
Advanced Solid State Lasers,
Optical Society of America, 2016: ATu4A. 2.
|
[60] |
YU H L, ZHANG H W, LV H B,
et al. 3.15 kW direct diode-pumped near diffraction-limited all-fiber-integrated fiber laser[J].
Applied Optics, 2015, 54(14): 4556-4560.
doi:10.1364/AO.54.004556
|
[61] |
XIAO H, LENG J Y, ZHANG H W,
et al. High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump[J].
Applied Optics, 2015, 54(27): 8166-8169.
doi:10.1364/AO.54.008166
|
[62] |
WANG M, WANG Z F, LIU L,
et al. Effective suppression of stimulated Raman scattering in half 10 kW tandem pumping fiber lasers using chirped and tilted fiber Bragg gratings[J].
Photonics Research, 2019, 7(2): 167-171.
doi:10.1364/PRJ.7.000167
|
[63] |
WANG J M, YAN D P, XIONG S S,
et al. High power all-fiber amplifier with different seed power injection[J].
Optics Express, 2016, 24(13): 14463-14469.
doi:10.1364/OE.24.014463
|
[64] |
HOU CH Q, ZHU Y G, ZHENG J K,
et al. Ytterbium-doped double-cladding fiber with 3.5 kW output power, fabricated by chelate gas phase deposition technique[J].
Optical Materials Express, 2016, 6(4): 979-985.
doi:10.1364/OME.6.000979
|
[65] |
ZHENG J K, ZHAO W, ZHAO B Y,
et al. 4.62 kW excellent beam quality laser output with a low-loss Yb/Ce co-doped fiber fabricated by chelate gas phase deposition technique[J].
Optical Materials Express, 2017, 7(4): 1259-1266.
doi:10.1364/OME.7.001259
|
[66] |
ZHAN H, LIU Q Y, WANG Y Y,
et al. 5 kW GTWave fiber amplifier directly pumped by commercial 976 nm laser diodes[J].
Optics Express, 2016, 24(24): 27087-27095.
doi:10.1364/OE.24.027087
|
[67] |
林傲祥, 湛欢, 彭昆, 等. 国产复合功能光纤实现万瓦 输出[J]. 强 与粒子束,2018,30(6):060101.
doi:10.11884/HPLPB201830.180110
LIN A X, ZHAN H, PENG K,
et al. 10 kW-level pump-gain integrated functional laser fiber[J].
High Power Laser and Particle Beams, 2018, 30(6): 060101. (in Chinese)
doi:10.11884/HPLPB201830.180110
|
[68] |
YAN P, HUANG Y SH, SUN J Y,
et al. 3.1 kW monolithic MOPA configuration fibre laser bidirectionally pumped by non-wavelength-stabilized laser diodes[J].
Laser Physics Letters, 2017, 14(8): 080001.
doi:10.1088/1612-202X/aa7c92
|
[69] |
XIAO Q R, LI D, HUANG Y SH,
et al. Directly diode and bi-directional pumping 6 kW continuous-wave all-fibre laser[J].
Laser Physics, 2018, 28(12): 125107.
doi:10.1088/1555-6611/aae4a1
|
[70] |
FANG Q, LI J H, SHI W,
et al. 5 kW near-diffraction-limited and 8 kW high-brightness monolithic continuous wave fiber lasers directly pumped by laser diodes[J].
IEEE Photonics Journal, 2017, 9(5): 1506107.
|
[71] |
陈晓龙, 楼风光, 何宇, 等. 高效率全国产化10 kW光纤 器[J]. 光学学报,2019,39(3):0336001.
doi:10.3788/AOS201939.0336001
CHEN X L, LOU F G, HE Y,
et al. Home-made 10 kW fiber laser with high efficiency[J].
Acta Optica Sinica, 2019, 39(3): 0336001. (in Chinese)
doi:10.3788/AOS201939.0336001
|
[72] |
OTTO H J, MODSCHING N, JAUREGUI C,
et al. Impact of photodarkening on the mode instability threshold[J].
Optics Express, 2015, 23(12): 15265-15277.
doi:10.1364/OE.23.015265
|
[73] |
王小林, 陶汝茂, 杨保来, 等. 掺镱全光纤 振荡器横向模式不稳定与受激拉曼散射的关系[J]. 中国 ,2018,45(8):0801008.
doi:10.3788/CJL201845.0801008
WANG X L, TAO R M, YANG B L,
et al. Relationship between transverse mode instability and stimulated Raman scattering in ytterbium doped all-fiber laser oscillator[J].
Chinese Journal of Lasers, 2018, 45(8): 0801008. (in Chinese)
doi:10.3788/CJL201845.0801008
|
[74] |
HONEA E, AFZAL R S, SAVAGE-LEUCHS M,
et al. Advances in fiber laser spectral beam combining for power scaling[J].
Proceedings of SPIE, 2016, 9730: 97300Y.
|
[75] |
SHCHERBAKOV E A, FOMIN V V, ABRAMOV A A,
et al.. Industrial grade 100 kW power CW fiber laser[C].
Advanced Solid State Lasers,
Optical Society of America, 2013: ATh4A. 2.
|
[76] |
郑也, 杨依枫, 赵翔, 等. 高功率光纤 光谱合成技术的研究进展[J]. 中国 ,2017,44(2):0201002.
doi:10.3788/CJL201744.0201002
ZHENG Y, YANG Y F, ZHAO X,
et al. Research progress on spectral beam combining technology of high-power fiber lasers[J].
Chinese Journal of Lasers, 2017, 44(2): 0201002. (in Chinese)
doi:10.3788/CJL201744.0201002
|