Volume 13 Issue 4
Aug.  2020
Turn off MathJax
Article Contents
CHENG Ya-ya, YU Hua-dong, YU Zhan-jiang, XU Jin-kai, ZHANG Xiang-hui. Method of enhancing the quality of in-line holographic images for micro-milling tool[J]. Chinese Optics, 2020, 13(4): 705-712. doi: 10.37188/CO.2019-0217
Citation: CHENG Ya-ya, YU Hua-dong, YU Zhan-jiang, XU Jin-kai, ZHANG Xiang-hui. Method of enhancing the quality of in-line holographic images for micro-milling tool[J]. Chinese Optics, 2020, 13(4): 705-712. doi: 10.37188/CO.2019-0217

Method of enhancing the quality of in-line holographic images for micro-milling tool

doi: 10.37188/CO.2019-0217
Funds:  (The National Key Research and Development Plan Project (No. 2018YFB1107403); The “111” Project of China (No. D17017); Jilin Province Scientific and Technological Development Program (No. 20190101005JH and No. 20180201057GX).)
More Information
  • Corresponding author: yuhuadong@cust.edu.cn
  • Received Date: 13 Nov 2019
  • Rev Recd Date: 09 Dec 2019
  • Publish Date: 01 Aug 2020
  • When tool setting with digital in-line holography, the zero-order image and defocused twin-image can form strong and complex background noise, which gets superimposed on the real image and seriously reduces the quality of the reconstructed image. To improve quality of interferential images in digital in-line holography, a holographic image enhancement method using an improved self-snake model is proposed. The improved self-snake model selects a diffusion intensity according to the gradient of the initial image. The experimental results show that the improved self-snake model can avoid the appearance of jagged edges and “pseudo-contours” caused by large gradient background noise during the diffusion process. This improvement outweighs the shortcomings of the self-snake model in holographic imaging. In addition, compared with the phase retrieval and multi-plane reproduction approaches, the improved self-snake model filtering method proposed in this paper not only has better suppression for interferential images but also can enhance the edge of the tool, which is conducive to the actualization of tool-setting using on digital in-line holography.

     

  • loading
  • [1]
    于占江, 王晶东, 张留新, 等. 微小车床对刀间隙检测技术[J]. 光电工程,2012,39(10):122-127. doi: 10.3969/j.issn.1003-501X.2012.10.020

    YU ZH J, WANG J D, ZHANG L X, et al. Detection method for tool setting gap of small lathe[J]. Opto-Electronic Engineering, 2012, 39(10): 122-127. (in Chinese) doi: 10.3969/j.issn.1003-501X.2012.10.020
    [2]
    MATSUMURA T F D, SHINOZAKI S M. Method of trial cutting: EP, 0566750A1[P]. 1994-02-16.
    [3]
    陈明涛, 李永强, 黄京岳. 一种接触式Z轴对刀仪: 中国, 209062685U[P]. 2019-07-05.

    CHEN M T, LI Y Q, HUANG J Y. A contact Z-axis tool-setting Instrument: CN, 209062685U[P]. 2019-07-05. (in Chinese)
    [4]
    SHI G F, ZHANG Y SH, ZHANG H, et al. Analysis of the influence of installation tilt error on the tool setting accuracy by laser diffraction[J]. Applied Optics, 2018, 57(12): 3012-3020. doi: 10.1364/AO.57.003012
    [5]
    刘力双. 电子摄像式刀具预调测量仪的研究[D]. 天津: 天津大学, 2006: 12-18.

    LIU L SH. Research of tool presetting and measuring machine based on CCD imaging[D]. Tianjin: Tianjin University, 2006: 12-18. (in Chinese)
    [6]
    BRAMLET C R. Tool presetting, shrinking and measuring-Zoller, booth 1551[J]. Modern Machine Shop, 2005.
    [7]
    于化东, 张向辉, 于占江, 等. 一种微径铣刀高精度对刀装置及对刀方法: CN, 105345595A[P]. 2016-02-24.

    YU H D, ZHANG X H, YU ZH J, et al.. A high-precision tool-setting device and method for micro-milling tools: CN, 105345595A[P]. 2016-02-24. (in Chinese)
    [8]
    LIU G, SCOTT P D. Phase retrieval and twin-image elimination for in-line Fresnel holograms[J]. Journal of the Optical Society of America A, 1987, 4(1): 159-165. doi: 10.1364/JOSAA.4.000159
    [9]
    LIU G. Object reconstruction from noisy holograms: multiplicative noise model[J]. Optics Communications, 1990, 79(6): 402-406. doi: 10.1016/0030-4018(90)90471-5
    [10]
    KOREN G, JOYEUX D, POLACK F. Twin-image elimination in in-line holography of finite-support complex objects[J]. Optics Letters, 1991, 16(24): 1979-1981. doi: 10.1364/OL.16.001979
    [11]
    ZHANG Y, PEDRINI G, OSTEN W, et al. Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm[J]. Optics Express, 2003, 11(24): 3234-3241. doi: 10.1364/OE.11.003234
    [12]
    LATYCHEVSKAIA T, FINK H W. Solution to the twin image problem in holography[J]. Physical Review Letters, 2007, 98(23): 233901. doi: 10.1103/PhysRevLett.98.233901
    [13]
    ZHAO J, WANG D Y, ZHANG F C, et al. Hybrid phase retrieval approach for reconstruction of in-line digital holograms without twin image[J]. Optical Engineering, 2011, 50(9): 091310. doi: 10.1117/1.3596203
    [14]
    戎路, 王大勇, 王云新, 等. 同轴数字全息中的相位恢复算法[J]. 中国 ,2014,41(2):0209006. doi: 10.3788/CJL201441.0209006

    RONG L, WANG D Y, WANG Y X, et al. Phase retrieval methods in in-line digital holography[J]. Chinese Journal of Lasers, 2014, 41(2): 0209006. (in Chinese) doi: 10.3788/CJL201441.0209006
    [15]
    WANG Y Z, ZHEN Y K, ZHANG H J, et al. Study on digital holography with single phase-shifting operation[J]. Chinese Optics Letters, 2004, 2(3): 141-143.
    [16]
    LAI S C, KING B, NEIFELD M A. Wave front reconstruction by means of phase-shifting digital in-line holography[J]. Optics Communications, 2000, 173(1-6): 155-160. doi: 10.1016/S0030-4018(99)00625-2
    [17]
    GUO P Y, DEVANEY A J. Digital microscopy using phase-shifting digital holography with two reference waves[J]. Optics Letters, 2004, 29(8): 857-859. doi: 10.1364/OL.29.000857
    [18]
    KAKUE T, TAHARA T, ITO K, et al. Parallel phase-shifting color digital holography using two phase shifts[J]. Applied Optics, 2009, 48(34): H244-H250. doi: 10.1364/AO.48.00H244
    [19]
    杨绍光, 谢行恕, 赵永飞, 等. 高通滤波法数字重现同轴全息图[J]. 强 与粒子束,1998,10(2):203-206.

    YANG SH G, XIE X SH, ZHAO Y F, et al. Digital reconstruction of in-line hologram with high-pass filter method[J]. High Power Laser and Particle Beams, 1998, 10(2): 203-206. (in Chinese)
    [20]
    YANG SH G, XIE X SH, ZHAO Y F, et al. Reconstruction of near-field in-line hologram[J]. Optics Communications, 1999, 159(1-3): 29-31. doi: 10.1016/S0030-4018(98)00346-0
    [21]
    刘迪, 王玉荣, 孟祥锋, 等. Gabor同轴数字全息的多重再现与自动聚焦[J]. 中国 ,2014,41(9):230-238.

    LIU D, WANG Y R, MENG X F, et al. Multi-plane reconstruction and auto-focus method of Gabor in-line digital holography[J]. Chinese Journal of Lasers, 2014, 41(9): 230-238. (in Chinese)
    [22]
    KREIS T M, JUEPTNER W P O. Suppression of the dc term in digital holography[J]. Optical Engineering, 1997, 36(8): 2357-2360. doi: 10.1117/1.601426
    [23]
    国承山, 王伟田, 李健, 等. 全息图数字再现中零级衍射斑的消除[J]. 光学学报,1998,18(8):1073-1076. doi: 10.3321/j.issn:0253-2239.1998.08.023

    GUO CH SH, WANG W T, LI J, et al. Elimination of zero-order diffraction spot in digital reconstruction of hologram[J]. Acta Optica Sinica, 1998, 18(8): 1073-1076. (in Chinese) doi: 10.3321/j.issn:0253-2239.1998.08.023
    [24]
    李俊昌. 衍射计算及数字全息[M]. 北京: 科学出版社, 2014: 81-84.

    LI J CH. Diffraction Calculation and Digital Holography[M]. Beijing: Science Press, 2014: 81-84. (in Chinese)
    [25]
    CASELLES V, KIMMEL R, SAPIRO G. Geodesic active contours[J]. International Journal of Computer Vision, 1997, 22: 61-79. doi: 10.1023/A:1007979827043
    [26]
    王大凯, 侯榆青, 彭进业. 图像处理的偏微分方程方法[M]. 北京: 科学出版社, 2008: 88-95.

    WANG D K, HOU Y Q, PENG J Y. Partial Differential Equation Method for Image Processing[M]. Beijing: Science Press, 2008: 88-95. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views(1845) PDF downloads(83) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    Baidu
    map