Volume 13Issue 4
Aug. 2020
Turn off MathJax
Article Contents
ZHANG Shuai, HOU Xi. Research progress of high-precision surface metrology of a K-B mirror[J]. Chinese Optics, 2020, 13(4): 660-675. doi: 10.37188/CO.2019-0231
Citation: ZHANG Shuai, HOU Xi. Research progress of high-precision surface metrology of a K-B mirror[J].Chinese Optics, 2020, 13(4): 660-675.doi:10.37188/CO.2019-0231

Research progress of high-precision surface metrology of a K-B mirror

doi:10.37188/CO.2019-0231
Funds:Supported by General Program of National Natural Science Foundation of China (No. 61675209)
More Information
  • Corresponding author:hxxh6776@163.com
  • Received Date:04 Dec 2019
  • Rev Recd Date:13 Jan 2020
  • Publish Date:01 Aug 2020
  • The advanced light source represented by the new generation of the diffraction limit synchrotron radiation source and the full-coherent X-ray free-electron laser has become an indispensable research tool in many fields. The continuous development of advanced light sources drives the rapid progress of ultra-precision optical manufacturing. The surface precision of a K-B mirror, a key focusing optical element in advanced light sources, is an important factor, which should be less than tens of nano radians. However, high precision K-B mirror surface metrology still has great technical challenges and is now a research hotspot in the scientific community. This paper introduces typical K-B mirror surface metrology, including reflection profile measuring technology such as the Long Trace Profiler (LTP), the Nanometer Optical component Measuring (NOM), and stitching interference metrology. Current K-B mirror surface shape technologies are summarized and the upcoming research progress is prospected.

  • loading
  • [1]
    KIRKPATRICK P, BAEZ A V. Formation of optical images by X-rays[J]. Journal of the Optical Society of America, 1948, 38(9): 766-774. doi:10.1364/JOSA.38.000766
    [2]
    GIEWEKEMEYER K, WILKE R N, OSTERHOFF M, et al. Versatility of a hard X-ray kirkpatrick–baez focus characterized by ptychography[J]. Journal of Synchrotron Radiation, 2013, 20(3): 490-497. doi:10.1107/S0909049513005372
    [3]
    NAULLEAU P P, GOLDBERG K A, BATSON P J, et al. Tolerancing of diffraction-limited Kirkpatrick-Baez synchrotron beamline optics for extreme-ultraviolet metrology[J]. Applied Optics, 2001, 40(22): 3703-3709. doi:10.1364/AO.40.003703
    [4]
    MATSUYAMA S, YAMADA J, KOHMURA Y, et al. Full-field X-ray fluorescence microscope based on total-reflection advanced Kirkpatrick-Baez mirror optics[J]. Optics Express, 2019, 27(13): 18318-18328. doi:10.1364/OE.27.018318
    [5]
    KODAMA R, IKEDA N, KATO Y, et al. Development of an advanced Kirkpatrick-Baez microscope[J]. Optics Letters, 1996, 21(17): 1321-1323. doi:10.1364/OL.21.001321
    [6]
    HUDEC R, PINA L, VAN INNEMAN A, et al. Lightweight x-ray optics for future space missions[J]. Proceedings of SPIE, 2003, 4851: 656-665. doi:10.1117/12.461590
    [7]
    YUMOTO H, MIMURA H, KOYAMA T, et al. Focusing of X-ray free-electron laser pulses with reflective optics[J]. Nature Photonics, 2012, 7(1): 43-47.
    [8]
    SIEWERT F, BUCHHEIM J, BOUTET S, et al. Ultra-precise characterization of LCLS hard X-ray focusing mirrors by high resolution slope measuring deflectometry[J]. Optics Express, 2012, 20(4): 4525-4536. doi:10.1364/OE.20.004525
    [9]
    HEYNACHER E, REINHARDT D. Measuring equipment for testing the directrix of high-resolution wolter-type telescopes[J]. Proceedings of SPIE, 1979, 184: 167-169. doi:10.1117/12.957446
    [10]
    COCCO D, IDIR M, MORTON D, et al. Advances in X-ray optics: from metrology characterization to wavefront sensing-based optimization of active optics[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 907: 105-115.
    [11]
    QIAN S, TAKACS P. Nano-accuracy Surface Figure Metrology of Precision Optics[M]. COCCO L. Modern Metrology Concerns. Rijeka: Intech Open, 2012.
    [12]
    OWADA S, TOGAWA K, INAGAKI T, et al. A soft X-ray free-electron laser beamline at SACLA: the light source, photon beamline and experimental station[J]. Journal of Synchrotron Radiation, 2018, 25(1): 282-288. doi:10.1107/S1600577517015685
    [13]
    YANDAYAN T, GECKELER R D, SIEWERT F. Pushing the limits: latest developments in angle metrology for the inspection of ultra-precise synchrotron optics[J]. Proceedings of SPIE, 2014, 9206: 92060F.
    [14]
    TAKACS P Z, FENG S C K, CHURCH E L, et al. Long trace profile measurements on cylindrical aspheres[J]. Proceedings of SPIE, 1989, 966: 354-364. doi:10.1117/12.948082
    [15]
    TAKACS P Z, QIAN SH N, COLBERT J. Design of a long trace surface profiler[J]. Proceedings of SPIE, 1987, 749: 59-64. doi:10.1117/12.939842
    [16]
    SIEWERT F, LAMMERT H, NOLL T, et al. Advanced metrology: an essential support for the surface finishing of high performance x-ray optics[J]. Proceedings of SPIE, 2005, 5921: 592101. doi:10.1117/12.622747
    [17]
    SIEWERT F, ZESCHKE T, ARNOLD T, et al. Linear chirped slope profile for spatial calibration in slope measuring deflectometry[J]. Review of Scientific Instruments, 2016, 87(5): 051907. doi:10.1063/1.4950737
    [18]
    OTSUBO M, OKADA K, TSUJIUCHI J. Measurement of large plane surface shapes by connecting small-aperture interferograms[J]. Optical Engineering, 1994, 33(2): 608-613. doi:10.1117/12.152248
    [19]
    IRICK S C, MCKINNEY W R, LUNT D L J, et al. Using a straightness reference in obtaining more accurate surface profiles from a long trace profiler[J]. Review of Scientific Instruments, 1992, 63(1): 1436-1438. doi:10.1063/1.1143036
    [20]
    QIAN SH N, LI H ZH, TAKACS P Z. Penta-Prism Long Trace Profiler (PPLTP) for measurement of grazing incidence space optics[J]. Proceedings of SPIE, 1996, 2805: 108-114. doi:10.1117/12.245083
    [21]
    QIAN SH N, SOSTERO G, TAKACS P Z. Precision calibration and systematic error reduction in the long trace profiler[J]. Optical Engineering, 2000, 39(1): 304-310. doi:10.1117/1.602364
    [22]
    PEDREIRA P, NICOLAS J, ŠICS I, et al. Deflectometry encoding the measured angle in a time-dependent intensity signal[J]. Review of Scientific Instruments, 2019, 90(2): 021707. doi:10.1063/1.5057768
    [23]
    QIAN SH N, TAKACS P Z. Design of multiple-function long trace profiler[J]. Optical Engineering, 2007, 46(4): 043602. doi:10.1117/1.2724851
    [24]
    FLORIOT J, LEVECQ X, BUCOURT S, et al. A Shack–Hartmann measuring head for the two-dimensional characterization of X-ray mirrors[J]. Journal of Synchrotron Radiation, 2008, 15(2): 134-139. doi:10.1107/S0909049507066083
    [25]
    IDIR M, KAZNATCHEEV K, DOVILLAIRE G, et al. A 2 D high accuracy slope measuring system based on a stitching shack hartmann optical head[J]. Optics Express, 2014, 22(3): 2770-2781. doi:10.1364/OE.22.002770
    [26]
    ALCOCK S G, SAWHNEY K J S, SCOTT S, et al. The Diamond-NOM: a non-contact profiler capable of characterizing optical figure error with sub-nanometre repeatability[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 616(2-3): 224-228. doi:10.1016/j.nima.2009.10.137
    [27]
    QIAN SH N, IDIR M. Innovative nano-accuracy surface profiler for sub-50 nrad rms mirror test[J]. Proceedings of SPIE, 2016, 9687: 96870D.
    [28]
    GECKELER R D. ESAD shearing deflectometry: potentials for synchrotron beamline metrology[J]. Proceedings of SPIE, 2006, 6317: 63171H. doi:10.1117/12.716301
    [29]
    LACEY I, ADAM J, CENTERS G P, et al. Development of a high performance surface slope measuring system for two-dimensional mapping of x-ray optics[J]. Proceedings of SPIE, 2017, 10385: 103850G.
    [30]
    QIAN SH N, WANG Q P, HONG Y L, et al. Multiple Functions Long Trace Profiler (LTP-MF) for national synchrotron radiation laboratory of China[J]. Proceedings of SPIE, 2005, 5921: 592104. doi:10.1117/12.618800
    [31]
    ZENG D H, XIAO T Q, DU G H, et al. New long trace profiler based on phase plate diffraction for optical metrology of SSRF[J]. Review of Scientific Instruments, 2006, 77(9): 093305. doi:10.1063/1.2186253
    [32]
    李直, 赵洋, 李达成, 等. 衍射型长程大型非球面轮廓测量仪[J]. 光学学报,2002,22(10):1224-1228. doi:10.3321/j.issn:0253-2239.2002.10.014

    LI ZH, ZHANG Y, LI D CH, et al. A diffractive long trace profiler for large aspherical optics[J]. Acta Optica Sinica, 2002, 22(10): 1224-1228. (in Chinese) doi:10.3321/j.issn:0253-2239.2002.10.014
    [33]
    SHUN L, YAN G, WEI ZH, et al. Design of co-path scanning long trace profiler for measurement of x-ray space optical elements[J]. Proceedings of SPIE, 2010, 7544: 754421. doi:10.1117/12.885415
    [34]
    澎湃新闻. 高能同步辐射光源验证装置通过国家验收, 最亮光源年中开建[OL]. https://www.thepaper.cn/newsDetail_forward_2935727. 2019-1-31.

    The Paper. The verification device of high energy synchrotron radiation light source has passed acceptance, and the brightest light source will be built in the middle of the year [OL]. https://www.thepaper.cn/newsDetail_forward_2935727. 2019-1-31.
    [35]
    秦超.同步辐射椭圆柱面压弯镜机构的研究[D]. 北京: 中国科学院大学(中国科学院上海应用物理研究所), 2018.

    QIN CH. Research on synchrotron radiation elliptic cylinder mirror bender[D]. Beijing: University of Chinese Academy of Sciences (Shanghai Institute of Applied Physics, Chinese Academy of Sciences), 2018. (in Chinese)
    [36]
    SIEWERT F, BUCHHEIM J, ZESCHKE T, et al. On the characterization of ultra-precise X-ray optical components: advances and challenges in ex situ metrology[J]. Journal of Synchrotron Radiation, 2014, 21(5): 968-975. doi:10.1107/S1600577514016221
    [37]
    ASSOUFID L, BRAY M, QIAN J, et al. 3D surface profile measurements of large x-ray synchrotron radiation mirrors using stitching interferometry[J]. Proceedings of SPIE, 2002: 4728.
    [38]
    VIVO A, LANTELME B, BAKER R, et al. Stitching methods at the European Synchrotron Radiation Facility (ESRF)[J]. Review of Scientific Instruments, 2016, 87(5): 051908. doi:10.1063/1.4950745
    [39]
    VIVO A, BARRETT R. Fizeau stitching at the European Synchrotron Radiation Facility (ESRF)[J]. Proceedings of SPIE, 2017, 10385: 103850N.
    [40]
    VIVO A, BARRETT R, PERRIN F. Stitching techniques for measuring X-ray synchrotron mirror topography[J]. Review of Scientific Instruments, 2019, 90(2): 021710. doi:10.1063/1.5063339
    [41]
    WIEGMANN A, STAVRIDIS M, WALZEL M, et al. Accuracy evaluation for sub-aperture interferometry measurements of a synchrotron mirror using virtual experiments[J]. Precision Engineering, 2011, 35(2): 183-190. doi:10.1016/j.precisioneng.2010.08.007
    [42]
    YAMAUCHI K, YAMAMURA K, MIMURA H, et al. Microstitching interferometry for x-ray reflective optics[J]. Review of Scientific Instruments, 2003, 74(5): 2894-2898. doi:10.1063/1.1569405
    [43]
    OHASHI H, TSUMURA T, OKADA H, et al. Microstitching interferometer and relative angle determinable stitching interferometer for half-meter-long x-ray mirror[J]. Proceedings of SPIE, 2007, 6704: 670405. doi:10.1117/12.733476
    [44]
    GEVORKYAN G S, CENTERS G, POLONSKA K S, et al.. Surface slope metrology of highly curved x-ray optics with an interferometric microscope[C]. Proceedings of SPIE, 2017, 10385: 103850H.
    [45]
    ASSOUFID L, QIAN J, KEWISH C M, et al. A microstitching interferometer for evaluating the surface profile of precisely figured X-ray K-B mirrors[J]. Proceedings of SPIE, 2007, 6704: 670406. doi:10.1117/12.736384
    [46]
    ROMMEVEAUX A, BARRETT R. Micro-stitching interferometry at the ESRF[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 616(2-3): 183-187.
    [47]
    POLACK F, THOMASSET M, BROCHET S, et al. Surface shape determination with a stitching Michelson interferometer and accuracy evaluation[J]. Review of Scientific Instruments, 2019, 90(2): 021708. doi:10.1063/1.5061930
    [48]
    MIMURA H, YUMOTO H, MATSUYAMA S, et al.. Microstitching interferometry for nanofocusing mirror optics[C]. Proceedings of SPIE, 2004, 5533: 170-180.
    [49]
    KIMURA T, OHASHI H, MIMURA H, et al. A stitching figure profiler of large X-ray mirrors using RADSI for subaperture data acquisition[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 616(2-3): 229-232. doi:10.1016/j.nima.2009.11.014
    [50]
    YUMOTO H, MIMURA H, KIMURA T, et al. Stitching interferometric metrology for steeply curved x-ray mirrors[J]. Surface and Interface Analysis, 2008, 40(6-7): 1023-1027. doi:10.1002/sia.2807
    [51]
    YUMOTO H, MIMURA H, HANDA S, et al. Stitching-angle measurable microscopic-interferometer: surface-figure metrology tool for hard X-ray nanofocusing mirrors with large curvature[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 616(2-3): 203-206.
    [52]
    YUMOTO H, KOYAMA T, MATSUYAMA S, et al. Stitching interferometry for ellipsoidal x-ray mirrors[J]. Review of Scientific Instruments, 2016, 87(5): 051905. doi:10.1063/1.4950714
    [53]
    EHRET G, LAUBACH S, SCHULZ M. Flatness metrology based on small-angle deflectometric procedures with electronic tiltmeters[J]. Proceedings of SPIE, 2017, 10326: 1032604.
    [54]
    MING L, SHANZHI T, FUGUI Y, et al.. Optical metrology at BSRF[C]. Advanced Optical Manufacturing and Testing Technologies, 2016.
    [55]
    XUE J P, HUANG L, GAO B, et al. One-dimensional stitching interferometry assisted by a triple-beam interferometer[J]. Optics Express, 2017, 25(8): 9393-9405. doi:10.1364/OE.25.009393
    [56]
    HUANG L, XUE J P, GAO B, et al. One-dimensional angular-measurement-based stitching interferometry[J]. Optics Express, 2018, 26(8): 9882-9892. doi:10.1364/OE.26.009882
    [57]
    HUANG L, IDIR M, ZUO CH, et al. Two-dimensional stitching interferometry based on tilt measurement[J]. Optics Express, 2018, 26(18): 23278-23286. doi:10.1364/OE.26.023278
    [58]
    陈善勇. 非球面子孔径拼接干涉测量的几何方法研究[D]. 长沙: 国防科学技术大学, 2006.

    CHEN SH Y. Geometrical approach to subaperture stitching interferometry for aspheric surface[D]. Changsha: National University of Defense Technology, 2006. (in Chinese)
    [59]
    侯溪, 伍凡, 杨力, 等. 环形子孔径拼接检测大口径非球面镜的规划模型及分析[J]. 光学 精密工程,2006,14(2):207-212.

    HOU X, WU F, YANG L, et al. Layout model and analysis of annular subaperture stitching technique for testing large aspheric mirror[J]. Optics and Precision Engineering, 2006, 14(2): 207-212. (in Chinese)
    [60]
    王孝坤, 王丽辉, 邓伟杰, 等. 用非零位补偿法检测大口径非球面反射镜[J]. 光学 精密工程,2011,19(3):520-528. doi:10.3788/OPE.20111903.0520

    WANG X K, WANG L H, DENG W J, et al. Measurement of large aspheric mirrors by non-null testing[J]. Optics and Precision Engineering, 2011, 19(3): 520-528. (in Chinese) doi:10.3788/OPE.20111903.0520
    [61]
    李长春, 程国民, 曹永刚. 自动调焦系统速度评估与仿真[J]. 液晶与显示,2019,34(5):515-520. doi:10.3788/YJYXS20193405.0515

    LI CH CH, CHENG G M, CAO Y G. Evaluation and simulation of auto-focus system speed[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(5): 515-520. (in Chinese) doi:10.3788/YJYXS20193405.0515
    [62]
    ZHAI D D, CHEN SH Y, PENG X Q, et al. Absolute profile test by multi-sensor scanning system with relative angle measurement[J]. Measurement Science and Technology, 2018, 29(11): 115205. doi:10.1088/1361-6501/aade0d
    [63]
    SHI Y N, XU X D, HUANG Q SH, et al. Development of relative angle determinable stitching interferometry for high-accuracy x-ray focusing mirrors[J]. Proceedings of SPIE, 2017, 10385: 103850M.
    [64]
    FREISCHLAD K R. Absolute Interferometric testing based on reconstruction of rotational shear[J]. Applied Optics, 2001, 40(10): 1637-1648. doi:10.1364/AO.40.001637
    [65]
    张敏, 隋永新, 杨怀江. 用于子孔径拼接干涉系统的机械误差补偿算法[J]. 光学 精密工程,2015,23(4):934-940. doi:10.3788/OPE.20152304.0934

    ZHANG M, SUI Y X, YANG H J. Mechanical error compensation algorithm for subaperture stitching interferometr[J]. Optics and Precision Engineering, 2015, 23(4): 934-940. (in Chinese) doi:10.3788/OPE.20152304.0934
    [66]
    MURPHY P, FORBES G, FLEIG J, et al. Stitching interferometry: a flexible solution for surface metrology[J]. Optics and Photonics News, 2003, 14(5): 38-43. doi:10.1364/OPN.14.5.000038
    [67]
    NICOLAS J, NG M L, PEDREIRA P, et al. Completeness condition for unambiguous profile reconstruction by sub-aperture stitching[J]. Optics Express, 2018, 26(21): 27212-27220. doi:10.1364/OE.26.027212
    [68]
    ASSOUFID L, BRAY M, SHU D M. Development of a linear stitching interferometric system for evaluation of very large X-ray synchrotron radiation substrates and mirrors[J]. AIP Conference Proceedings, 2004, 705(1): 851-854.
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)/Tables(4)

    Article views(3007) PDF downloads(221) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map