Citation: | SUN Jun-jie, CHEN Fei, HE Yang, CONG Chun-xiao, QU Jia-yi, JI Yan-hui, BAO He. Application of emerging transition metal dichalcogenides in ultrafast lasers[J].Chinese Optics, 2020, 13(4): 647-659.doi:10.37188/CO.2019-0241 |
[1] |
SIBBETT W, LAGATSKY A A, BROWN C T A. The development and application of femtosecond laser systems[J].
Optics Express, 2012, 20(7): 6989-7001.
doi:10.1364/OE.20.006989
|
[2] |
YE J. Absolute measurement of a long, arbitrary distance to less than an optical fringe[J].
Optics Letters, 2004, 29(10): 1153-1155.
doi:10.1364/OL.29.001153
|
[3] |
岱钦, 毛有明, 吴凯旋, 等. 脉冲 测距中高速精密时间间隔测量研究[J]. 液晶与显示,2015,30(1):83-88.
doi:10.3788/YJYXS20153001.0083
DAI Q, MAO Y M, WU K X,
et al. High speed and high precision time-interval measurement system in pulsed laser ranging[J].
Chinese Journal of Liquid Crystals and Displays, 2015, 30(1): 83-88. (in Chinese)
doi:10.3788/YJYXS20153001.0083
|
[4] |
高慧, 赵佳宇, 刘伟伟. 超快 成丝现象的多丝控制[J]. 光学 精密工程,2013,21(3):698-607.
GAO H, ZHAO J Y, LIU W W. Control of multiple filamentation induced by ultrafast laser pulse[J].
Optics and Precision Engineering, 2013, 21(3): 698-607. (in Chinese)
|
[5] |
TRÄGER F.
Handbook of Lasers and Optics[M]. 2nd ed. New York: Springer, 2012.
|
[6] |
姜可, 谢冀江, 杨贵龙, 等. GaSe晶体的双光子吸收对太赫兹输出的影响[J]. 发光学报,2015,36(3):361-365.
doi:10.3788/fgxb20153603.0361
JIANG K, XIE J J, YANG G L,
et al. Two-photon absorption attenuated THz generation in GaSe[J].
Chinese Journal of Luminescence, 2015, 36(3): 361-365. (in Chinese)
doi:10.3788/fgxb20153603.0361
|
[7] |
TANTER M, TOUBOUL D, GENNISSON J L,
et al. High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging[J].
IEEE Transactions on Medical Imaging, 2009, 28(12): 1881-1893.
doi:10.1109/TMI.2009.2021471
|
[8] |
CHOU S Y, KEIMEL C, GU J. Ultrafast and direct imprint of nanostructures in silicon[J].
Nature, 2002, 417(6891): 835-837.
doi:10.1038/nature00792
|
[9] |
KELLER U. Recent developments in compact ultrafast lasers[J].
Nature, 2003, 424(6950): 831-838.
doi:10.1038/nature01938
|
[10] |
李景照, 陈振强, 朱思祁. 基于Yb: YAG/Cr
4+: YAG/YAG键合晶体的被动调
Q 器[J]. 光学 精密工程,2018,26(1):55-61.
doi:10.3788/OPE.20182601.0055
LI J ZH, CHEN ZH Q, ZHU S Q. Passively
Q-switched laser with a Yb: YAG/Cr
4+: YAG/YAG composite crystal[J].
Optics and Precision Engineering, 2018, 26(1): 55-61. (in Chinese)
doi:10.3788/OPE.20182601.0055
|
[11] |
程秀凤, 陈丽娟, 韩树娟, 等. LD端面泵浦Nd: LiGd(MoO
4)
2晶体的主动调Q脉冲 特性[J]. 光学 精密工程,2013,21(4):836-840.
CHENG X F, CHEN L J, HAN SH J,
et al. Actively Q-switched pulse laser from LD end-pumped Nd: LiGd(MoO
4)
2crystals[J].
Optics and Precision Engineering, 2013, 21(4): 836-840. (in Chinese)
|
[12] |
王加贤, 庄鑫巍. 基于半导体可饱和吸收镜实现闪光灯抽运Nd: YAG 器的被动调
Q与锁模[J]. 光学 精密工程,2006,14(4):584-588.
WANG J X, ZHUANG X W. Passive
Q-switching and mode-locking in a flashlamp-pumped Nd: YAG laser with semiconductor saturable absorption mirror[J].
Optics and Precision Engineering, 2006, 14(4): 584-588. (in Chinese)
|
[13] |
余锦, 刘伟仁. 1.0 μm掺钕介质全固化调Q脉冲 技术[J]. 光学 精密工程,2000,8(2):297-302.
YU J, LIU W R. All-solid-state Q-switched lasers with Nd
3+-doped crystals oscillating at 1.0 μm[J].
Optics and Precision Engineering, 2000, 8(2): 297-302. (in Chinese)
|
[14] |
王蓟, 王国政, 刘洋, 等. 全光纤声光调Q铒镱共掺双包层光纤 器[J]. 发光学报,2008,29(6):1018-1022.
WANG J, WANG G ZH, LIU Y,
et al. All-fiber acousto-optic Q-switched Er
3+/Yb
3+co-doped double-cladding fiber lasers[J].
Chinese Journal of Luminescence, 2008, 29(6): 1018-1022. (in Chinese)
|
[15] |
王国立, 郭亨群, 苏培林, 等. nc-Si/SiN
x超晶格薄膜实现Nd: YAG 器调Q和锁模[J]. 发光学报,2008,29(5):905-909.
WANG G L, GUO H Q, SU P L,
et al. Passive Q-switching and mode locking of pulsed Nd: YAG laser with nc-Si/SiN
xmultilayer[J].
Chinese Journal of Luminescence, 2008, 29(5): 905-909. (in Chinese)
|
[16] |
张伶莉, 孙秀冬, 刘永军, 等. 具有外部谐振腔的胆甾相液晶 器的研究[J]. 液晶与显示,2013,28(5):679-682.
doi:10.3788/YJYXS20132805.0679
ZHANG L L, SUN X D, LIU Y J,
et al. Cholesteric liquid crystals laser with external cavity[J].
Chinese Journal of Liquid Crystals and Displays, 2013, 28(5): 679-682. (in Chinese)
doi:10.3788/YJYXS20132805.0679
|
[17] |
苏晶, 刘玉荣, 莫昌文, 等. ZnO基薄膜晶体管有源层制备技术的研究进展[J]. 液晶与显示,2013,28(3):315-322.
doi:10.3788/YJYXS20132803.0315
SU J, LIU Y R, MO CH W,
et al. Research development on preparation technologies of active layer preparation of ZnO-based thin film[J].
Chinese Journal of Liquid Crystals and Displays, 2013, 28(3): 315-322. (in Chinese)
doi:10.3788/YJYXS20132803.0315
|
[18] |
ZIRNGIBL M, STULZ L W, STONE J,
et al. 1.2 ps pulses from passively mode-locked laser diode pumped Er-doped fibre ring laser[J].
Electronics Letters, 1991, 27(19): 1734-1735.
doi:10.1049/el:19911079
|
[19] |
WEI CH, SHI H X, LUO H Y,
et al. 34 nm-wavelength-tunable picosecond Ho
3+/Pr
3+-codoped ZBLAN fiber laser[J].
Optics Express, 2017, 25(16): 19170-19178.
doi:10.1364/OE.25.019170
|
[20] |
TANG P H, QIN ZH P, LIU J,
et al. Watt-level passively mode-locked Er
3+-doped ZBLAN fiber laser at 2.8 μm[J].
Optics Letters, 2015, 40(21): 4855-4858.
doi:10.1364/OL.40.004855
|
[21] |
NOVOSELOV K S, JIANG D, SCHEDIN F,
et al. Two-dimensional atomic crystals[J].
Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10451-10453.
doi:10.1073/pnas.0502848102
|
[22] |
WANG Q H, KALANTAR-ZADEH K, KIS A,
et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J].
Nature Nanotechnology, 2012, 7(11): 699-712.
doi:10.1038/nnano.2012.193
|
[23] |
CHEN Y, JIANG G B, CHEN SH Q,
et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation[J].
Optics Express, 2015, 23(10): 12823-12833.
doi:10.1364/OE.23.012823
|
[24] |
JIANG X T, LIU SH X, LIANG W Y,
et al. Broadband nonlinear photonics in few-layer MXene Ti
3C
2T
x(T = F, O, or OH)[J].
Laser&
Photonics Review, 2018, 12(2): 1700229.
|
[25] |
WANG SH X, YU H H, ZHANG H J,
et al. Broadband few-layer MoS
2saturable absorbers[J].
Advanced Materials, 2014, 26(21): 3538-3544.
doi:10.1002/adma.201306322
|
[26] |
WANG M X, ZHANG F, WANG ZH P,
et al. Passively Q-switched Nd
3+solid-state lasers with antimonene as saturable absorber[J].
Optics Express, 2018, 26(4): 4085-4095.
doi:10.1364/OE.26.004085
|
[27] |
GUO J, HUANG D ZH, ZHANG Y,
et al.. 2D GeP as a novel broadband nonlinear optical material for ultrafast photonics[J].
Laser&
Photonics Reviews, 2019, 13: 1900123.
|
[28] |
MOHANRAJ J, VELMURUGAN V, SIVABALAN S. Transition metal dichalcogenides based saturable absorbers for pulsed laser technology[J].
Optical Materials, 2016, 60: 601-617.
doi:10.1016/j.optmat.2016.09.007
|
[29] |
TIU Z C, OOI S I, GUO J,
et al. Review: application of transition metal dichalcogenide in pulsed fiber laser system[J].
Materials Research Express, 2019, 6(8): 082004.
doi:10.1088/2053-1591/ab2257
|
[30] |
LI H, LU G, WANG Y L,
et al. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe
2, TaS
2, and TaSe
2[J].
Small, 2013, 9(11): 1974-1981.
doi:10.1002/smll.201202919
|
[31] |
COLEMAN J N, LOTYA M, O’NEILL A,
et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J].
Science, 2011, 331(6017): 568-571.
doi:10.1126/science.1194975
|
[32] |
MAK K F, HE K L, SHAN J,
et al. Control of valley polarization in monolayer MoS
2by optical helicity[J].
Nature Nanotechnology, 2012, 7(8): 494-498.
doi:10.1038/nnano.2012.96
|
[33] |
BERTOLAZZI S, BRIVIO J, KIS A. Stretching and breaking of ultrathin MoS
2[J].
ACS Nano, 2011, 5(12): 9703-9709.
doi:10.1021/nn203879f
|
[34] |
LEE Y H, ZHANG X Q, ZHANG W J,
et al. Synthesis of large-area MoS
2atomic layers with chemical vapor deposition[J].
Advanced Materials, 2012, 24(17): 2320-2325.
doi:10.1002/adma.201104798
|
[35] |
NAJMAEI S, LIU ZH, ZHOU W,
et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers[J].
Nature Materials, 2013, 12(8): 754-759.
doi:10.1038/nmat3673
|
[36] |
REN L, QI X, LIU Y D,
et al. Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route[J].
Journal of Materials Chemistry, 2012, 22(11): 4921-4926.
doi:10.1039/c2jm15973b
|
[37] |
PRADO G, FOURNÈS L, DELMAS C. On the Li
xNi
0.70Fe
0.15Co
0.15O
2system: an X-ray diffraction and mössbauer study[J].
Journal of Solid State Chemistry, 2001, 159(1): 103-112.
doi:10.1006/jssc.2001.9137
|
[38] |
RAMAKRISHNA MATTE H S S, GOMATHI A,
et al. MoS
2and WS
2analogues of graphene[J].
Angewandte Chemie International Edition, 2010, 49(24): 4059-4062.
doi:10.1002/anie.201000009
|
[39] |
FOMINSKI V Y, NEVOLIN V N, ROMANOV R I,
et al. Ion-assisted deposition of MoS
xfilms from laser-generated plume under pulsed electric field[J].
Journal of Applied Physics, 2001, 89(2): 1449-1457.
doi:10.1063/1.1330558
|
[40] |
CONG CH X, SHANG J ZH, WU X,
et al. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS
2monolayer from chemical vapor deposition[J].
Advanced Optical Materials, 2014, 2(2): 131-136.
doi:10.1002/adom.201300428
|
[41] |
REICHARDT S, WIRTZ L.
Raman Spectroscopy of Graphene[M]. BINDER R. Optical Properties of Graphene. Singapore: World Scientific, 2017.
|
[42] |
DRESSELHAUS M S, JORIO A, SAITO R. Characterizing graphene, graphite, and carbon nanotubes by raman spectroscopy[J].
Annual Review of Condensed Matter Physics, 2010, 1: 89-108.
doi:10.1146/annurev-conmatphys-070909-103919
|
[43] |
DRESSELHAUS M S, JORIO A, HOFMAN M,
et al. Perspectives on carbon nanotubes and graphene raman spectroscopy[J].
Nano Letters, 2010, 10(3): 751-758.
doi:10.1021/nl904286r
|
[44] |
ZUO CH H, CAO Y P, YANG Q,
et al. Passively
Q-switched 295-μm bulk laser based on rhenium disulfide as saturable absorber[J].
IEEE Photonics Technology Letters, 2019, 31(3): 206-209.
doi:10.1109/LPT.2018.2886784
|
[45] |
HUANG B, DU L, YI Q,
et al. Bulk-structured PtSe
2for femtosecond fiber laser mode-locking[J].
Optics Express, 2019, 27(3): 2604-2611.
doi:10.1364/OE.27.002604
|
[46] |
YAO Y P, LI X W, SONG R G,
et al. The energy band structure analysis and 2 μm Q-switched laser application of layered rhenium diselenide[J].
RSC Advances, 2019, 9(25): 14417-14421.
doi:10.1039/C9RA02311A
|
[47] |
WANG J T, CHEN H, JIANG Z K,
et al. Mode-locked thulium-doped fiber laser with chemical vapor deposited molybdenum ditelluride[J].
Optics Letters, 2018, 43(9): 1998-2001.
doi:10.1364/OL.43.001998
|
[48] |
WANG J T, JIANG Z K, CHEN H,
et al. Magnetron-sputtering deposited WTe
2for an ultrafast thulium-doped fiber laser[J].
Optics Letters, 2017, 42(23): 5010-5013.
doi:10.1364/OL.42.005010
|
[49] |
TIAN X L, WEI R F, LIU M,
et al. Ultrafast saturable absorption in TiS
2induced by non-equilibrium electrons and the generation of a femtosecond mode-locked laser[J].
Nanoscale, 2018, 10(20): 9608-9615.
doi:10.1039/C8NR01573B
|
[50] |
WU K, CHEN B H, ZHANG X Y,
et al. High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited)[J].
Optics Communications, 2018, 406: 214-229.
doi:10.1016/j.optcom.2017.02.024
|
[51] |
TIAN Z, WU K, KONG L CH,
et al. Mode-locked thulium fiber laser with MoS
2[J].
Laser Physics Letters, 2015, 12(6): 065104.
doi:10.1088/1612-2011/12/6/065104
|
[52] |
WEI CH, LUO H Y, ZHANG H,
et al. Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS
2) saturable absorber[J].
Laser Physics Letters, 2016, 13(10): 105108.
doi:10.1088/1612-2011/13/10/105108
|
[53] |
HOU J, ZHAO G, WU Y ZH,
et al. Femtosecond solid-state laser based on tungsten disulfide saturable absorber[J].
Optics Express, 2015, 23(21): 27292-27298.
doi:10.1364/OE.23.027292
|
[54] |
CHEN B H, ZHANG X Y, WU K,
et al. Q-switched fiber laser based on transition metal dichalcogenides MoS
2, MoSe
2, WS
2, and WSe
2[J].
Optics Express, 2015, 23(20): 26723-26737.
doi:10.1364/OE.23.026723
|
[55] |
WU K, ZHANG X Y, WANG J,
et al. WS
2as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers[J].
Optics Express, 2015, 23(9): 11453-11461.
doi:10.1364/OE.23.011453
|
[56] |
WU K, ZHANG X Y, WANG J,
et al. 463-MHz fundamental mode-locked fiber laser based on few-layer MoS
2saturable absorber[J].
Optics Letters, 2015, 40(7): 1374-1377.
doi:10.1364/OL.40.001374
|
[57] |
WANG Q K, CHEN Y, MIAO L L,
et al. Wide spectral and wavelength-tunable dissipative soliton fiber laser with topological insulator nano-sheets self-assembly films sandwiched by PMMA polymer[J].
Optics Express, 2015, 23(6): 7681-7693.
doi:10.1364/OE.23.007681
|
[58] |
XING CH Y, XIE ZH J, LIANG ZH M,
et al. 2D nonlayered selenium nanosheets: facile synthesis, photoluminescence, and ultrafast photonics[J].
Advanced Optical Materials, 2017, 5(24): 1700884.
doi:10.1002/adom.201700884
|
[59] |
YAN P G, LIN R Y, CHEN H,
et al. Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser[J].
IEEE Photonics Technology Letters, 2015, 27(3): 264-267.
doi:10.1109/LPT.2014.2361915
|
[60] |
YAN P G, LIU A J, CHEN Y SH,
et al. Passively mode-locked fiber laser by a cell-type WS
2nanosheets saturable absorber[J].
Scientific Reports, 2015, 5(1): 12587.
doi:10.1038/srep12587
|
[61] |
WANG K P, WANG J, FAN J T,
et al. Ultrafast saturable absorption of two-dimensional MoS
2nanosheets[J].
ACS Nano, 2013, 7(10): 9260-9267.
doi:10.1021/nn403886t
|
[62] |
XU B, CHENG Y J, WANG Y,
et al. Passively Q-switched Nd: YAlO
3nanosecond laser using MoS
2as saturable absorber[J].
Optics Express, 2014, 22(23): 28934-28940.
doi:10.1364/OE.22.028934
|
[63] |
TONGAY S, SAHIN H, KO C,
et al. Monolayer behaviour in bulk ReS
2due to electronic and vibrational decoupling[J].
Nature Communications, 2014, 5(1): 3252.
doi:10.1038/ncomms4252
|
[64] |
CHHOWALLA M, SHIN H S, EDA G,
et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J].
Nature Chemistry, 2013, 5(4): 263-275.
doi:10.1038/nchem.1589
|
[65] |
XU M SH, LIANG T, SHI M M,
et al. Graphene-like two-dimensional materials[J].
Chemical Reviews, 2013, 113(5): 3766-3798.
doi:10.1021/cr300263a
|
[66] |
LIU E F, FU Y J, WANG Y J,
et al. Integrated digital inverters based on two-dimensional anisotropic ReS
2field-effect transistors[J].
Nature Communications, 2015, 6(1): 6991.
doi:10.1038/ncomms7991
|
[67] |
TIAN H, CHIN M L, NAJMAEI S,
et al. Optoelectronic devices based on two-dimensional transition metal dichalcogenides[J].
Nano Research, 2016, 9(6): 1543-1560.
doi:10.1007/s12274-016-1034-9
|
[68] |
ZHANG E Z, JIN Y B, YUAN X,
et al. ReS
2-based field-effect transistors and photodetectors[J].
Advanced Functional Materials, 2015, 25(26): 4076-4082.
doi:10.1002/adfm.201500969
|
[69] |
SU X C, ZHANG B T, WANG Y R,
et al. Broadband rhenium disulfide optical modulator for solid-state lasers[J].
Photonics Research, 2018, 6(6): 498-505.
doi:10.1364/PRJ.6.000498
|
[70] |
HAN SH, ZHOU SH SH, LIU X L,
et al. Rhenium disulfide-based passively Q-switched dual-wavelength laser at 0.95 μm and 1.06 μm in Nd: YAG[J].
Laser Physics Letters, 2018, 15(8): 085804.
doi:10.1088/1612-202X/aac983
|
[71] |
LIN M X, PENG Q Q, HOU W,
et al. 1.3 μm Q-switched solid-state laser based on few-layer ReS
2saturable absorber[J].
Optics&
Laser Technology, 2019, 109: 90-93.
|
[72] |
TAO L L, HUANG X W, HE J SH,
et al. Vertically standing PtSe
2film: a saturable absorber for a passively mode-locked Nd: LuVO
4laser[J].
Photonics Research, 2018, 6(7): 750-755.
doi:10.1364/PRJ.6.000750
|
[73] |
YAN B ZH, ZHANG B T, NIE H K,
et al. Bilayer platinum diselenide saturable absorber for 2.0 μm passively Q-switched bulk lasers[J].
Optics Express, 2018, 26(24): 31657-31663.
doi:10.1364/OE.26.031657
|
[74] |
LI Z Q, LI R, PANG CH,
et al. 8.8 GHz Q-switched mode-locked waveguide lasers modulated by PtSe
2saturable absorber[J].
Optics Express, 2019, 27(6): 8727-8737.
doi:10.1364/OE.27.008727
|
[75] |
WANG SH Q, HUANG H T, LIU X,
et al. Rhenium diselenide as the broadband saturable absorber for the nanosecond passively Q-switched thulium solid-state lasers[J].
Optical Materials, 2019, 88: 630-634.
doi:10.1016/j.optmat.2018.12.042
|
[76] |
XUE Y CH, LI L, ZHANG B,
et al. ReSe
2passively Q-switched Nd: Y
3Al
5O
12laser with near repetition rate limit of microsecond pulse output[J].
Optics Communications, 2019, 455: 165-170.
|
[77] |
YAO Y P, CUI N, WANG Q G,
et al. Highly efficient continuous-wave and ReSe
2
Q-switched ~3 μm dual-wavelength Er: YAP crystal lasers[J].
Optics Letters, 2019, 44(11): 2839-2842.
doi:10.1364/OL.44.002839
|
[78] |
LI Z Q, DONG N N, ZHANG Y X,
et al. Invited Article: mode-locked waveguide lasers modulated by rhenium diselenide as a new saturable absorber[J].
APL Photonics, 2018, 3(8): 080802.
doi:10.1063/1.5032243
|
[79] |
LI CH, LENG Y X, HUO J J. Diode-pumped solid-state Q-switched laser with rhenium diselenide as saturable absorber[J].
Applied Sciences, 2018, 8(10): 1753.
doi:10.3390/app8101753
|
[80] |
YAN ZH Y, LI T, ZHAO SH ZH,
et al. MoTe
2saturable absorber for passively Q-switched Ho, Pr: LiLuF
4laser at ~3 μm[J].
Optics and Laser Technology, 2018, 100: 261-264.
doi:10.1016/j.optlastec.2017.10.012
|
[81] |
LI Y H, XU Y F, XU G Y,
et al. Performance of an Yb: LaCa
4O(BO
3)
3crystal laser at 1.03~1.04 μm passively Q-switched with 2D MoTe
2saturable absorber[J].
Infrared Physics&
Technology, 2019, 99: 167-171.
|
[82] |
ZHANG Y ZH, WANG J W, GUAN X F,
et al. MoTe
2-based broadband wavelength tunable eye-safe pulsed laser source at 1.9 μm[J].
IEEE Photonics Technology Letters, 2018, 30(21): 1890-1893.
doi:10.1109/LPT.2018.2871467
|
[83] |
LIANG Y Y, ZHAO J, QIAO W CH,
et al. Passively Q-switched Er: YAG laser at 1645 nm utilizing a multilayer molybdenum ditelluride (MoTe
2) saturable absorber[J].
Laser Physics Letters, 2018, 15(9): 095801.
doi:10.1088/1612-202X/aacfae
|
[84] |
YAN B ZH, ZHANG B T, NIE H K,
et al. High-power passively Q-switched 2.0 μm all-solid-state laser based on a MoTe
2saturable absorber[J].
Optics Express, 2018, 26(14): 18505-18512.
doi:10.1364/OE.26.018505
|
[85] |
MA Y J, TIAN K, DOU X D,
et al. Passive Q-switching induced by few-layer MoTe
2in an Yb: YCOB microchip laser[J].
Optics Express, 2018, 26(19): 25147-25155.
doi:10.1364/OE.26.025147
|
[86] |
TIAN K, LI Y H, YANG J N,
et al. Passively Q-switched Yb: KLu(WO
4)
2laser with 2D MoTe
2acting as saturable absorber[J].
Applied Physics B, 2019, 125(2): 24.
doi:10.1007/s00340-019-7135-x
|
[87] |
CHEN L J, LI X, ZHANG H K,
et al. Passively
Q-switched 1.989 μm all-solid-state laser based on a WTe
2saturable absorber[J].
Applied Optics, 2018, 57(35): 10239-10242.
doi:10.1364/AO.57.010239
|
[88] |
YAN ZH Y, LI T, ZHAO J,
et al. Tungsten ditelluride for a nanosecond Ho, Pr: LiLuF
4laser at 2.95 μm[J].
Laser Physics Letters, 2018, 15(4): 045801.
doi:10.1088/1612-202X/aaa94b
|
[89] |
LI G Q, WU CH, YAN ZH Y,
et al. TiS
2as a novel saturable absorber for a 1645 nm passively
Q-switched laser[J].
Laser Physics, 2019, 29(5): 055801.
doi:10.1088/1555-6611/ab0d13
|
[90] |
WOODWARD R I, KELLEHER E J R, HOWE R C T,
et al. Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer Molybdenum disulfide (MoS
2)[J].
Optics Express, 2014, 22(25): 31113-31122.
doi:10.1364/OE.22.031113
|
[91] |
CUI Y D, LU F F, LIU X M. Nonlinear saturable and polarization-induced absorption of rhenium disulfide[J].
Scientific Reports, 2017, 7(1): 40080.
doi:10.1038/srep40080
|
[92] |
MAO D, CUI X Q, GAN X T,
et al. Passively Q-switched and mode-locked fiber laser based on an ReS
2saturable absorber[J].
IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 1100406.
|
[93] |
LU F F. Passively harmonic mode-locked fiber laser based on ReS
2saturable absorber[J].
Modern Physics Letters B, 2017, 31(18): 1750206.
doi:10.1142/S0217984917502062
|
[94] |
ZHAO R W, LI G R, ZHANG B T,
et al. Multi-wavelength bright-dark pulse pair fiber laser based on rhenium disulfide[J].
Optics Express, 2018, 26(5): 5819-5826.
doi:10.1364/OE.26.005819
|
[95] |
LU B L, WEN Z R, HUANG K X,
et al. Passively Q-switched Yb
3+-doped fiber laser with ReS
2Saturable absorber[J].
IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(4): 1600104.
|
[96] |
YUAN J, MU H R, LI L,
et al. Few-layer platinum diselenide as a new saturable absorber for ultrafast fiber lasers[J].
ACS Applied Materials&
Interfaces, 2018, 10(25): 21534-21540.
|
[97] |
ZHANG K, FENG M, REN Y Y,
et al.
Q-switched and mode-locked Er-doped fiber laser using PtSe
2as a saturable absorber[J].
Photonics Research, 2018, 6(9): 893-899.
doi:10.1364/PRJ.6.000893
|
[98] |
LI Y H, LOU Y J, HE J S,
et al.
Q-switched ytterbium fiber laser based on rhenium diselenide as a saturable absorber[J].
Journal of Physics D:
Applied Physics, 2019, 52(46): 465101.
doi:10.1088/1361-6463/ab3883
|
[99] |
LEE J, LEE K, KWON S,
et al. Investigation of nonlinear optical properties of rhenium diselenide and its application as a femtosecond mode-locker[J].
Photonics Research, 2019, 7(9): 984-993.
doi:10.1364/PRJ.7.000984
|
[100] |
DU L, JIANG G B, MIAO L L,
et al. Few-layer rhenium diselenide: an ambient-stable nonlinear optical modulator[J].
Optical Materials Express, 2018, 8(4): 926-935.
doi:10.1364/OME.8.000926
|
[101] |
WANG G M. Wavelength-switchable passively mode-locked fiber laser with mechanically exfoliated molybdenum ditelluride on side-polished fiber[J].
Optics&
Laser Technology, 2017, 96: 307-312.
|
[102] |
LIU M L, LIU W J, WEI ZH Y. MoTe
2saturable absorber with high modulation depth for erbium-doped fiber laser[J].
Journal of Lightwave Technology, 2019, 37(13): 3100-3105.
doi:10.1109/JLT.2019.2910892
|
[103] |
LIU M L, LIU W J, YAN P G,
et al. High-power MoTe
2-based passively
Q-switched erbium-doped fiber laser[J].
Chinese Optics Letters, 2018, 16(2): 020007.
doi:10.3788/COL201816.020007
|
[104] |
WANG J T, JIANG Z K, CHEN H,
et al. High energy soliton pulse generation by a magnetron -sputtering- deposition -grown MoTe
2saturable absorber[J].
Photonics Research, 2018, 6(6): 535-541.
doi:10.1364/PRJ.6.000535
|
[105] |
KO S, LEE J, LEE J H. Passively
Q-switched ytterbium-doped fiber laser using the evanescent field interaction with bulk-like WTe
2particles[J].
Chinese Optics Letters, 2018, 16(2): 020017.
doi:10.3788/COL201816.020017
|
[106] |
LIU M L, OUYANG Y Y, HOU H R,
et al.
Q-switched fiber laser operating at 1.5 μm based on WTe
2[J].
Chinese Optics Letters, 2019, 17(2): 020006.
doi:10.3788/COL201917.020006
|
[107] |
ZHU X, CHEN S, ZHANG M,
et al. TiS
2-based saturable absorber for ultrafast fiber lasers[J].
Photonics Research, 2018, 6(10): C44-C48.
doi:10.1364/PRJ.6.000C44
|