Citation: | SUN Jun-jie, CHEN Fei, HE Yang, CONG Chun-xiao, QU Jia-yi, JI Yan-hui, BAO He. Application of emerging transition metal dichalcogenides in ultrafast lasers[J]. Chinese Optics, 2020, 13(4): 647-659. doi: 10.37188/CO.2019-0241 |
[1] |
SIBBETT W, LAGATSKY A A, BROWN C T A. The development and application of femtosecond laser systems[J]. Optics Express, 2012, 20(7): 6989-7001. doi: 10.1364/OE.20.006989
|
[2] |
YE J. Absolute measurement of a long, arbitrary distance to less than an optical fringe[J]. Optics Letters, 2004, 29(10): 1153-1155. doi: 10.1364/OL.29.001153
|
[3] |
岱钦, 毛有明, 吴凯旋, 等. 脉冲金宝搏188软件怎么用
测距中高速精密时间间隔测量研究[J]. 液晶与显示,2015,30(1):83-88. doi: 10.3788/YJYXS20153001.0083
DAI Q, MAO Y M, WU K X, et al. High speed and high precision time-interval measurement system in pulsed laser ranging[J]. Chinese Journal of Liquid Crystals and Displays, 2015, 30(1): 83-88. (in Chinese) doi: 10.3788/YJYXS20153001.0083
|
[4] |
高慧, 赵佳宇, 刘伟伟. 超快金宝搏188软件怎么用
成丝现象的多丝控制[J]. 光学 精密工程,2013,21(3):698-607.
GAO H, ZHAO J Y, LIU W W. Control of multiple filamentation induced by ultrafast laser pulse[J]. Optics and Precision Engineering, 2013, 21(3): 698-607. (in Chinese)
|
[5] |
TRÄGER F. Handbook of Lasers and Optics[M]. 2nd ed. New York: Springer, 2012.
|
[6] |
姜可, 谢冀江, 杨贵龙, 等. GaSe晶体的双光子吸收对太赫兹输出的影响[J]. 发光学报,2015,36(3):361-365. doi: 10.3788/fgxb20153603.0361
JIANG K, XIE J J, YANG G L, et al. Two-photon absorption attenuated THz generation in GaSe[J]. Chinese Journal of Luminescence, 2015, 36(3): 361-365. (in Chinese) doi: 10.3788/fgxb20153603.0361
|
[7] |
TANTER M, TOUBOUL D, GENNISSON J L, et al. High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging[J]. IEEE Transactions on Medical Imaging, 2009, 28(12): 1881-1893. doi: 10.1109/TMI.2009.2021471
|
[8] |
CHOU S Y, KEIMEL C, GU J. Ultrafast and direct imprint of nanostructures in silicon[J]. Nature, 2002, 417(6891): 835-837. doi: 10.1038/nature00792
|
[9] |
KELLER U. Recent developments in compact ultrafast lasers[J]. Nature, 2003, 424(6950): 831-838. doi: 10.1038/nature01938
|
[10] |
李景照, 陈振强, 朱思祁. 基于Yb: YAG/Cr4+: YAG/YAG键合晶体的被动调Q金宝搏188软件怎么用
器[J]. 光学 精密工程,2018,26(1):55-61. doi: 10.3788/OPE.20182601.0055
LI J ZH, CHEN ZH Q, ZHU S Q. Passively Q-switched laser with a Yb: YAG/Cr4+: YAG/YAG composite crystal[J]. Optics and Precision Engineering, 2018, 26(1): 55-61. (in Chinese) doi: 10.3788/OPE.20182601.0055
|
[11] |
程秀凤, 陈丽娟, 韩树娟, 等. LD端面泵浦Nd: LiGd(MoO4)2晶体的主动调Q脉冲金宝搏188软件怎么用
特性[J]. 光学 精密工程,2013,21(4):836-840.
CHENG X F, CHEN L J, HAN SH J, et al. Actively Q-switched pulse laser from LD end-pumped Nd: LiGd(MoO4)2 crystals[J]. Optics and Precision Engineering, 2013, 21(4): 836-840. (in Chinese)
|
[12] |
王加贤, 庄鑫巍. 基于半导体可饱和吸收镜实现闪光灯抽运Nd: YAG金宝搏188软件怎么用
器的被动调Q与锁模[J]. 光学 精密工程,2006,14(4):584-588.
WANG J X, ZHUANG X W. Passive Q-switching and mode-locking in a flashlamp-pumped Nd: YAG laser with semiconductor saturable absorption mirror[J]. Optics and Precision Engineering, 2006, 14(4): 584-588. (in Chinese)
|
[13] |
余锦, 刘伟仁. 1.0 μm掺钕介质全固化调Q脉冲金宝搏188软件怎么用
技术[J]. 光学 精密工程,2000,8(2):297-302.
YU J, LIU W R. All-solid-state Q-switched lasers with Nd3+-doped crystals oscillating at 1.0 μm[J]. Optics and Precision Engineering, 2000, 8(2): 297-302. (in Chinese)
|
[14] |
王蓟, 王国政, 刘洋, 等. 全光纤声光调Q铒镱共掺双包层光纤金宝搏188软件怎么用
器[J]. 发光学报,2008,29(6):1018-1022.
WANG J, WANG G ZH, LIU Y, et al. All-fiber acousto-optic Q-switched Er3+/Yb3+ co-doped double-cladding fiber lasers[J]. Chinese Journal of Luminescence, 2008, 29(6): 1018-1022. (in Chinese)
|
[15] |
王国立, 郭亨群, 苏培林, 等. nc-Si/SiNx超晶格薄膜实现Nd: YAG金宝搏188软件怎么用
器调Q和锁模[J]. 发光学报,2008,29(5):905-909.
WANG G L, GUO H Q, SU P L, et al. Passive Q-switching and mode locking of pulsed Nd: YAG laser with nc-Si/SiNx multilayer[J]. Chinese Journal of Luminescence, 2008, 29(5): 905-909. (in Chinese)
|
[16] |
张伶莉, 孙秀冬, 刘永军, 等. 具有外部谐振腔的胆甾相液晶金宝搏188软件怎么用
器的研究[J]. 液晶与显示,2013,28(5):679-682. doi: 10.3788/YJYXS20132805.0679
ZHANG L L, SUN X D, LIU Y J, et al. Cholesteric liquid crystals laser with external cavity[J]. Chinese Journal of Liquid Crystals and Displays, 2013, 28(5): 679-682. (in Chinese) doi: 10.3788/YJYXS20132805.0679
|
[17] |
苏晶, 刘玉荣, 莫昌文, 等. ZnO基薄膜晶体管有源层制备技术的研究进展[J]. 液晶与显示,2013,28(3):315-322. doi: 10.3788/YJYXS20132803.0315
SU J, LIU Y R, MO CH W, et al. Research development on preparation technologies of active layer preparation of ZnO-based thin film[J]. Chinese Journal of Liquid Crystals and Displays, 2013, 28(3): 315-322. (in Chinese) doi: 10.3788/YJYXS20132803.0315
|
[18] |
ZIRNGIBL M, STULZ L W, STONE J, et al. 1.2 ps pulses from passively mode-locked laser diode pumped Er-doped fibre ring laser[J]. Electronics Letters, 1991, 27(19): 1734-1735. doi: 10.1049/el:19911079
|
[19] |
WEI CH, SHI H X, LUO H Y, et al. 34 nm-wavelength-tunable picosecond Ho3+/Pr3+-codoped ZBLAN fiber laser[J]. Optics Express, 2017, 25(16): 19170-19178. doi: 10.1364/OE.25.019170
|
[20] |
TANG P H, QIN ZH P, LIU J, et al. Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm[J]. Optics Letters, 2015, 40(21): 4855-4858. doi: 10.1364/OL.40.004855
|
[21] |
NOVOSELOV K S, JIANG D, SCHEDIN F, et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10451-10453. doi: 10.1073/pnas.0502848102
|
[22] |
WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699-712. doi: 10.1038/nnano.2012.193
|
[23] |
CHEN Y, JIANG G B, CHEN SH Q, et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation[J]. Optics Express, 2015, 23(10): 12823-12833. doi: 10.1364/OE.23.012823
|
[24] |
JIANG X T, LIU SH X, LIANG W Y, et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH)[J]. Laser &Photonics Review, 2018, 12(2): 1700229.
|
[25] |
WANG SH X, YU H H, ZHANG H J, et al. Broadband few-layer MoS2 saturable absorbers[J]. Advanced Materials, 2014, 26(21): 3538-3544. doi: 10.1002/adma.201306322
|
[26] |
WANG M X, ZHANG F, WANG ZH P, et al. Passively Q-switched Nd3+ solid-state lasers with antimonene as saturable absorber[J]. Optics Express, 2018, 26(4): 4085-4095. doi: 10.1364/OE.26.004085
|
[27] |
GUO J, HUANG D ZH, ZHANG Y, et al.. 2D GeP as a novel broadband nonlinear optical material for ultrafast photonics[J]. Laser &Photonics Reviews, 2019, 13: 1900123.
|
[28] |
MOHANRAJ J, VELMURUGAN V, SIVABALAN S. Transition metal dichalcogenides based saturable absorbers for pulsed laser technology[J]. Optical Materials, 2016, 60: 601-617. doi: 10.1016/j.optmat.2016.09.007
|
[29] |
TIU Z C, OOI S I, GUO J, et al. Review: application of transition metal dichalcogenide in pulsed fiber laser system[J]. Materials Research Express, 2019, 6(8): 082004. doi: 10.1088/2053-1591/ab2257
|
[30] |
LI H, LU G, WANG Y L, et al. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2[J]. Small, 2013, 9(11): 1974-1981. doi: 10.1002/smll.201202919
|
[31] |
COLEMAN J N, LOTYA M, O’NEILL A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017): 568-571. doi: 10.1126/science.1194975
|
[32] |
MAK K F, HE K L, SHAN J, et al. Control of valley polarization in monolayer MoS2 by optical helicity[J]. Nature Nanotechnology, 2012, 7(8): 494-498. doi: 10.1038/nnano.2012.96
|
[33] |
BERTOLAZZI S, BRIVIO J, KIS A. Stretching and breaking of ultrathin MoS2[J]. ACS Nano, 2011, 5(12): 9703-9709. doi: 10.1021/nn203879f
|
[34] |
LEE Y H, ZHANG X Q, ZHANG W J, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition[J]. Advanced Materials, 2012, 24(17): 2320-2325. doi: 10.1002/adma.201104798
|
[35] |
NAJMAEI S, LIU ZH, ZHOU W, et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers[J]. Nature Materials, 2013, 12(8): 754-759. doi: 10.1038/nmat3673
|
[36] |
REN L, QI X, LIU Y D, et al. Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route[J]. Journal of Materials Chemistry, 2012, 22(11): 4921-4926. doi: 10.1039/c2jm15973b
|
[37] |
PRADO G, FOURNÈS L, DELMAS C. On the LixNi0.70Fe0.15Co0.15O2 system: an X-ray diffraction and mössbauer study[J]. Journal of Solid State Chemistry, 2001, 159(1): 103-112. doi: 10.1006/jssc.2001.9137
|
[38] |
RAMAKRISHNA MATTE H S S, GOMATHI A, et al. MoS2 and WS2 analogues of graphene[J]. Angewandte Chemie International Edition, 2010, 49(24): 4059-4062. doi: 10.1002/anie.201000009
|
[39] |
FOMINSKI V Y, NEVOLIN V N, ROMANOV R I, et al. Ion-assisted deposition of MoSx films from laser-generated plume under pulsed electric field[J]. Journal of Applied Physics, 2001, 89(2): 1449-1457. doi: 10.1063/1.1330558
|
[40] |
CONG CH X, SHANG J ZH, WU X, et al. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition[J]. Advanced Optical Materials, 2014, 2(2): 131-136. doi: 10.1002/adom.201300428
|
[41] |
REICHARDT S, WIRTZ L. Raman Spectroscopy of Graphene[M]. BINDER R. Optical Properties of Graphene. Singapore: World Scientific, 2017.
|
[42] |
DRESSELHAUS M S, JORIO A, SAITO R. Characterizing graphene, graphite, and carbon nanotubes by raman spectroscopy[J]. Annual Review of Condensed Matter Physics, 2010, 1: 89-108. doi: 10.1146/annurev-conmatphys-070909-103919
|
[43] |
DRESSELHAUS M S, JORIO A, HOFMAN M, et al. Perspectives on carbon nanotubes and graphene raman spectroscopy[J]. Nano Letters, 2010, 10(3): 751-758. doi: 10.1021/nl904286r
|
[44] |
ZUO CH H, CAO Y P, YANG Q, et al. Passively Q-switched 295-μm bulk laser based on rhenium disulfide as saturable absorber[J]. IEEE Photonics Technology Letters, 2019, 31(3): 206-209. doi: 10.1109/LPT.2018.2886784
|
[45] |
HUANG B, DU L, YI Q, et al. Bulk-structured PtSe2 for femtosecond fiber laser mode-locking[J]. Optics Express, 2019, 27(3): 2604-2611. doi: 10.1364/OE.27.002604
|
[46] |
YAO Y P, LI X W, SONG R G, et al. The energy band structure analysis and 2 μm Q-switched laser application of layered rhenium diselenide[J]. RSC Advances, 2019, 9(25): 14417-14421. doi: 10.1039/C9RA02311A
|
[47] |
WANG J T, CHEN H, JIANG Z K, et al. Mode-locked thulium-doped fiber laser with chemical vapor deposited molybdenum ditelluride[J]. Optics Letters, 2018, 43(9): 1998-2001. doi: 10.1364/OL.43.001998
|
[48] |
WANG J T, JIANG Z K, CHEN H, et al. Magnetron-sputtering deposited WTe2 for an ultrafast thulium-doped fiber laser[J]. Optics Letters, 2017, 42(23): 5010-5013. doi: 10.1364/OL.42.005010
|
[49] |
TIAN X L, WEI R F, LIU M, et al. Ultrafast saturable absorption in TiS2 induced by non-equilibrium electrons and the generation of a femtosecond mode-locked laser[J]. Nanoscale, 2018, 10(20): 9608-9615. doi: 10.1039/C8NR01573B
|
[50] |
WU K, CHEN B H, ZHANG X Y, et al. High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited)[J]. Optics Communications, 2018, 406: 214-229. doi: 10.1016/j.optcom.2017.02.024
|
[51] |
TIAN Z, WU K, KONG L CH, et al. Mode-locked thulium fiber laser with MoS2[J]. Laser Physics Letters, 2015, 12(6): 065104. doi: 10.1088/1612-2011/12/6/065104
|
[52] |
WEI CH, LUO H Y, ZHANG H, et al. Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber[J]. Laser Physics Letters, 2016, 13(10): 105108. doi: 10.1088/1612-2011/13/10/105108
|
[53] |
HOU J, ZHAO G, WU Y ZH, et al. Femtosecond solid-state laser based on tungsten disulfide saturable absorber[J]. Optics Express, 2015, 23(21): 27292-27298. doi: 10.1364/OE.23.027292
|
[54] |
CHEN B H, ZHANG X Y, WU K, et al. Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2[J]. Optics Express, 2015, 23(20): 26723-26737. doi: 10.1364/OE.23.026723
|
[55] |
WU K, ZHANG X Y, WANG J, et al. WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers[J]. Optics Express, 2015, 23(9): 11453-11461. doi: 10.1364/OE.23.011453
|
[56] |
WU K, ZHANG X Y, WANG J, et al. 463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber[J]. Optics Letters, 2015, 40(7): 1374-1377. doi: 10.1364/OL.40.001374
|
[57] |
WANG Q K, CHEN Y, MIAO L L, et al. Wide spectral and wavelength-tunable dissipative soliton fiber laser with topological insulator nano-sheets self-assembly films sandwiched by PMMA polymer[J]. Optics Express, 2015, 23(6): 7681-7693. doi: 10.1364/OE.23.007681
|
[58] |
XING CH Y, XIE ZH J, LIANG ZH M, et al. 2D nonlayered selenium nanosheets: facile synthesis, photoluminescence, and ultrafast photonics[J]. Advanced Optical Materials, 2017, 5(24): 1700884. doi: 10.1002/adom.201700884
|
[59] |
YAN P G, LIN R Y, CHEN H, et al. Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser[J]. IEEE Photonics Technology Letters, 2015, 27(3): 264-267. doi: 10.1109/LPT.2014.2361915
|
[60] |
YAN P G, LIU A J, CHEN Y SH, et al. Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber[J]. Scientific Reports, 2015, 5(1): 12587. doi: 10.1038/srep12587
|
[61] |
WANG K P, WANG J, FAN J T, et al. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets[J]. ACS Nano, 2013, 7(10): 9260-9267. doi: 10.1021/nn403886t
|
[62] |
XU B, CHENG Y J, WANG Y, et al. Passively Q-switched Nd: YAlO3 nanosecond laser using MoS2 as saturable absorber[J]. Optics Express, 2014, 22(23): 28934-28940. doi: 10.1364/OE.22.028934
|
[63] |
TONGAY S, SAHIN H, KO C, et al. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling[J]. Nature Communications, 2014, 5(1): 3252. doi: 10.1038/ncomms4252
|
[64] |
CHHOWALLA M, SHIN H S, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 2013, 5(4): 263-275. doi: 10.1038/nchem.1589
|
[65] |
XU M SH, LIANG T, SHI M M, et al. Graphene-like two-dimensional materials[J]. Chemical Reviews, 2013, 113(5): 3766-3798. doi: 10.1021/cr300263a
|
[66] |
LIU E F, FU Y J, WANG Y J, et al. Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors[J]. Nature Communications, 2015, 6(1): 6991. doi: 10.1038/ncomms7991
|
[67] |
TIAN H, CHIN M L, NAJMAEI S, et al. Optoelectronic devices based on two-dimensional transition metal dichalcogenides[J]. Nano Research, 2016, 9(6): 1543-1560. doi: 10.1007/s12274-016-1034-9
|
[68] |
ZHANG E Z, JIN Y B, YUAN X, et al. ReS2-based field-effect transistors and photodetectors[J]. Advanced Functional Materials, 2015, 25(26): 4076-4082. doi: 10.1002/adfm.201500969
|
[69] |
SU X C, ZHANG B T, WANG Y R, et al. Broadband rhenium disulfide optical modulator for solid-state lasers[J]. Photonics Research, 2018, 6(6): 498-505. doi: 10.1364/PRJ.6.000498
|
[70] |
HAN SH, ZHOU SH SH, LIU X L, et al. Rhenium disulfide-based passively Q-switched dual-wavelength laser at 0.95 μm and 1.06 μm in Nd: YAG[J]. Laser Physics Letters, 2018, 15(8): 085804. doi: 10.1088/1612-202X/aac983
|
[71] |
LIN M X, PENG Q Q, HOU W, et al. 1.3 μm Q-switched solid-state laser based on few-layer ReS2 saturable absorber[J]. Optics &Laser Technology, 2019, 109: 90-93.
|
[72] |
TAO L L, HUANG X W, HE J SH, et al. Vertically standing PtSe2 film: a saturable absorber for a passively mode-locked Nd: LuVO4 laser[J]. Photonics Research, 2018, 6(7): 750-755. doi: 10.1364/PRJ.6.000750
|
[73] |
YAN B ZH, ZHANG B T, NIE H K, et al. Bilayer platinum diselenide saturable absorber for 2.0 μm passively Q-switched bulk lasers[J]. Optics Express, 2018, 26(24): 31657-31663. doi: 10.1364/OE.26.031657
|
[74] |
LI Z Q, LI R, PANG CH, et al. 8.8 GHz Q-switched mode-locked waveguide lasers modulated by PtSe2 saturable absorber[J]. Optics Express, 2019, 27(6): 8727-8737. doi: 10.1364/OE.27.008727
|
[75] |
WANG SH Q, HUANG H T, LIU X, et al. Rhenium diselenide as the broadband saturable absorber for the nanosecond passively Q-switched thulium solid-state lasers[J]. Optical Materials, 2019, 88: 630-634. doi: 10.1016/j.optmat.2018.12.042
|
[76] |
XUE Y CH, LI L, ZHANG B, et al. ReSe2 passively Q-switched Nd: Y3Al5 O12 laser with near repetition rate limit of microsecond pulse output[J]. Optics Communications, 2019, 455: 165-170.
|
[77] |
YAO Y P, CUI N, WANG Q G, et al. Highly efficient continuous-wave and ReSe2 Q-switched ~3 μm dual-wavelength Er: YAP crystal lasers[J]. Optics Letters, 2019, 44(11): 2839-2842. doi: 10.1364/OL.44.002839
|
[78] |
LI Z Q, DONG N N, ZHANG Y X, et al. Invited Article: mode-locked waveguide lasers modulated by rhenium diselenide as a new saturable absorber[J]. APL Photonics, 2018, 3(8): 080802. doi: 10.1063/1.5032243
|
[79] |
LI CH, LENG Y X, HUO J J. Diode-pumped solid-state Q-switched laser with rhenium diselenide as saturable absorber[J]. Applied Sciences, 2018, 8(10): 1753. doi: 10.3390/app8101753
|
[80] |
YAN ZH Y, LI T, ZHAO SH ZH, et al. MoTe2 saturable absorber for passively Q-switched Ho, Pr: LiLuF4 laser at ~3 μm[J]. Optics and Laser Technology, 2018, 100: 261-264. doi: 10.1016/j.optlastec.2017.10.012
|
[81] |
LI Y H, XU Y F, XU G Y, et al. Performance of an Yb: LaCa4O(BO3)3 crystal laser at 1.03~1.04 μm passively Q-switched with 2D MoTe2 saturable absorber[J]. Infrared Physics &Technology, 2019, 99: 167-171.
|
[82] |
ZHANG Y ZH, WANG J W, GUAN X F, et al. MoTe2-based broadband wavelength tunable eye-safe pulsed laser source at 1.9 μm[J]. IEEE Photonics Technology Letters, 2018, 30(21): 1890-1893. doi: 10.1109/LPT.2018.2871467
|
[83] |
LIANG Y Y, ZHAO J, QIAO W CH, et al. Passively Q-switched Er: YAG laser at 1645 nm utilizing a multilayer molybdenum ditelluride (MoTe2) saturable absorber[J]. Laser Physics Letters, 2018, 15(9): 095801. doi: 10.1088/1612-202X/aacfae
|
[84] |
YAN B ZH, ZHANG B T, NIE H K, et al. High-power passively Q-switched 2.0 μm all-solid-state laser based on a MoTe2 saturable absorber[J]. Optics Express, 2018, 26(14): 18505-18512. doi: 10.1364/OE.26.018505
|
[85] |
MA Y J, TIAN K, DOU X D, et al. Passive Q-switching induced by few-layer MoTe2 in an Yb: YCOB microchip laser[J]. Optics Express, 2018, 26(19): 25147-25155. doi: 10.1364/OE.26.025147
|
[86] |
TIAN K, LI Y H, YANG J N, et al. Passively Q-switched Yb: KLu(WO4)2 laser with 2D MoTe2 acting as saturable absorber[J]. Applied Physics B, 2019, 125(2): 24. doi: 10.1007/s00340-019-7135-x
|
[87] |
CHEN L J, LI X, ZHANG H K, et al. Passively Q-switched 1.989 μm all-solid-state laser based on a WTe2 saturable absorber[J]. Applied Optics, 2018, 57(35): 10239-10242. doi: 10.1364/AO.57.010239
|
[88] |
YAN ZH Y, LI T, ZHAO J, et al. Tungsten ditelluride for a nanosecond Ho, Pr: LiLuF4 laser at 2.95 μm[J]. Laser Physics Letters, 2018, 15(4): 045801. doi: 10.1088/1612-202X/aaa94b
|
[89] |
LI G Q, WU CH, YAN ZH Y, et al. TiS2 as a novel saturable absorber for a 1645 nm passively Q-switched laser[J]. Laser Physics, 2019, 29(5): 055801. doi: 10.1088/1555-6611/ab0d13
|
[90] |
WOODWARD R I, KELLEHER E J R, HOWE R C T, et al. Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer Molybdenum disulfide (MoS2)[J]. Optics Express, 2014, 22(25): 31113-31122. doi: 10.1364/OE.22.031113
|
[91] |
CUI Y D, LU F F, LIU X M. Nonlinear saturable and polarization-induced absorption of rhenium disulfide[J]. Scientific Reports, 2017, 7(1): 40080. doi: 10.1038/srep40080
|
[92] |
MAO D, CUI X Q, GAN X T, et al. Passively Q-switched and mode-locked fiber laser based on an ReS2 saturable absorber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 1100406.
|
[93] |
LU F F. Passively harmonic mode-locked fiber laser based on ReS2 saturable absorber[J]. Modern Physics Letters B, 2017, 31(18): 1750206. doi: 10.1142/S0217984917502062
|
[94] |
ZHAO R W, LI G R, ZHANG B T, et al. Multi-wavelength bright-dark pulse pair fiber laser based on rhenium disulfide[J]. Optics Express, 2018, 26(5): 5819-5826. doi: 10.1364/OE.26.005819
|
[95] |
LU B L, WEN Z R, HUANG K X, et al. Passively Q-switched Yb3+-doped fiber laser with ReS2 Saturable absorber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(4): 1600104.
|
[96] |
YUAN J, MU H R, LI L, et al. Few-layer platinum diselenide as a new saturable absorber for ultrafast fiber lasers[J]. ACS Applied Materials &Interfaces, 2018, 10(25): 21534-21540.
|
[97] |
ZHANG K, FENG M, REN Y Y, et al. Q-switched and mode-locked Er-doped fiber laser using PtSe2 as a saturable absorber[J]. Photonics Research, 2018, 6(9): 893-899. doi: 10.1364/PRJ.6.000893
|
[98] |
LI Y H, LOU Y J, HE J S, et al. Q-switched ytterbium fiber laser based on rhenium diselenide as a saturable absorber[J]. Journal of Physics D:Applied Physics, 2019, 52(46): 465101. doi: 10.1088/1361-6463/ab3883
|
[99] |
LEE J, LEE K, KWON S, et al. Investigation of nonlinear optical properties of rhenium diselenide and its application as a femtosecond mode-locker[J]. Photonics Research, 2019, 7(9): 984-993. doi: 10.1364/PRJ.7.000984
|
[100] |
DU L, JIANG G B, MIAO L L, et al. Few-layer rhenium diselenide: an ambient-stable nonlinear optical modulator[J]. Optical Materials Express, 2018, 8(4): 926-935. doi: 10.1364/OME.8.000926
|
[101] |
WANG G M. Wavelength-switchable passively mode-locked fiber laser with mechanically exfoliated molybdenum ditelluride on side-polished fiber[J]. Optics &Laser Technology, 2017, 96: 307-312.
|
[102] |
LIU M L, LIU W J, WEI ZH Y. MoTe2 saturable absorber with high modulation depth for erbium-doped fiber laser[J]. Journal of Lightwave Technology, 2019, 37(13): 3100-3105. doi: 10.1109/JLT.2019.2910892
|
[103] |
LIU M L, LIU W J, YAN P G, et al. High-power MoTe2-based passively Q-switched erbium-doped fiber laser[J]. Chinese Optics Letters, 2018, 16(2): 020007. doi: 10.3788/COL201816.020007
|
[104] |
WANG J T, JIANG Z K, CHEN H, et al. High energy soliton pulse generation by a magnetron -sputtering- deposition -grown MoTe2 saturable absorber[J]. Photonics Research, 2018, 6(6): 535-541. doi: 10.1364/PRJ.6.000535
|
[105] |
KO S, LEE J, LEE J H. Passively Q-switched ytterbium-doped fiber laser using the evanescent field interaction with bulk-like WTe2 particles[J]. Chinese Optics Letters, 2018, 16(2): 020017. doi: 10.3788/COL201816.020017
|
[106] |
LIU M L, OUYANG Y Y, HOU H R, et al. Q-switched fiber laser operating at 1.5 μm based on WTe2[J]. Chinese Optics Letters, 2019, 17(2): 020006. doi: 10.3788/COL201917.020006
|
[107] |
ZHU X, CHEN S, ZHANG M, et al. TiS2-based saturable absorber for ultrafast fiber lasers[J]. Photonics Research, 2018, 6(10): C44-C48. doi: 10.1364/PRJ.6.000C44
|