Volume 13 Issue 5
Sep.  2020
Turn off MathJax
Article Contents
MA Wang-jiehui, LIU Yan-lei, CHEN Zhi-ying, LIU Yu-fang. Near-infrared BRDF of material surfaces at varying temperatures[J]. Chinese Optics, 2020, 13(5): 1115-1123. doi: 10.37188/CO.2019-0256
Citation: MA Wang-jiehui, LIU Yan-lei, CHEN Zhi-ying, LIU Yu-fang. Near-infrared BRDF of material surfaces at varying temperatures[J]. Chinese Optics, 2020, 13(5): 1115-1123. doi: 10.37188/CO.2019-0256

Near-infrared BRDF of material surfaces at varying temperatures

Funds:  Supported by National Natural Science Foundation of China (No. 61627818, No. 61675065, No. U1804261, No. 61905068); Key Scientific Research Projects of Henan Province Colleges and Universities (No. 20A140015)
More Information
  • Corresponding author: yf-liu@htu.cn
  • Received Date: 13 Jan 2020
  • Rev Recd Date: 19 Feb 2020
  • Available Online: 10 Sep 2020
  • Publish Date: 01 Oct 2020
  • The spectral polarized BRDF of a brass surface in the near-infrared region was measured using the absolute measurement method with a home-made device. The temperature range was 20~800 ℃, and the influence of temperature on the BRDF was analyzed. The results indicate that temperature has an obvious influence on the BRDF of brass. With an increase in temperature, the BRDF was almost constant at first, then increased before finally decreasing. Scanning electron microscope testing, roughness measurement and X-ray diffraction analysis of the brass surface at different temperatures were performed. The test results indicate that the influence of temperature on BRDF can be attributed to variation in surface morphology and chemical composition.

     

  • loading
  • NICODEMUS F E. Directional reflectance and emissivity of an opaque surface[J]. Applied Optics, 1965, 4(7): 767-775. doi: 10.1364/AO.4.000767
    ELLIS K K. Polarimetric bidirectional reflectance distribution function of glossy coatings[J]. Journal of the Optical Society of America A, 1996, 13(8): 1758-1762. doi: 10.1364/JOSAA.13.001758
    SANDMEIER S, MÜLLER C, HOSGOOD B, et al. Physical mechanisms in hyperspectral brdf data of grass and watercress[J]. Remote Sensing of Environment, 1998, 66(2): 222-233. doi: 10.1016/S0034-4257(98)00060-1
    SCHAAF C B, GAO F, STRAHLER A H, et al. First operational BRDF, albedo nadir reflectance products from MODIS[J]. Remote Sensing of Environment, 2002, 83(1-2): 135-148. doi: 10.1016/S0034-4257(02)00091-3
    SCHAEPMAN-STRUB G, SCHAEPMAN M E, PAINTER T H, et al. Reflectance quantities in optical remote sensing-definitions and case studies[J]. Remote Sensing of Environment, 2006, 103(1): 27-42. doi: 10.1016/j.rse.2006.03.002
    MARSCHNER S R, WESTIN S H, LAFORTUNE E, et al. Image-based bidirectional reflectance distribution function measurement[J]. Applied Optics, 2000, 39(16): 2592-2600. doi: 10.1364/AO.39.002592
    BOUSQUET L, LACHÉRADE S, JACQUEMOUD S, et al. Leaf BRDF measurements and model for specular and diffuse components differentiation[J]. Remote Sensing of Environment, 2005, 98(2-3): 201-211. doi: 10.1016/j.rse.2005.07.005
    张百顺, 刘文清, 魏庆农, 等. 基于双向反射分布函数实验测量的目标散射特性的分析[J]. 光学技术,2006,32(2):180-182. doi: 10.3321/j.issn:1002-1582.2006.02.006

    ZHANG B SH, LIU W Q, WEI Q N, et al. Analysis of scattering characteristic of the sample based on BRDF experiment measurements[J]. Optical Technique, 2006, 32(2): 180-182. (in Chinese) doi: 10.3321/j.issn:1002-1582.2006.02.006
    LELOUP F B, FORMENT S, DUTRÉ P, et al. Design of an instrument for measuring the spectral bidirectional scatter distribution function[J]. Applied Optics, 2008, 47(29): 5454-5467. doi: 10.1364/AO.47.005454
    WANG H Y, ZHANG W, DONG A T. Measurement and modeling of Bidirectional Reflectance Distribution Function (BRDF) on material surface[J]. Measurement, 2013, 46(9): 3654-3661. doi: 10.1016/j.measurement.2013.07.008
    GATEBE C K, KING M D. Airborne spectral BRDF of various surface types (ocean, vegetation, snow, desert, wetlands, cloud decks, smoke layers) for remote sensing applications[J]. Remote Sensing of Environment, 2016, 179: 131-148. doi: 10.1016/j.rse.2016.03.029
    KALLEL A. Leaf polarized BRDF simulation based on Monte Carlo 3-D vector RT modeling[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 221: 202-224. doi: 10.1016/j.jqsrt.2018.09.033
    PELTONIEMI J I, KAASALAINEN S, NÄRÄNEN J, et al. BRDF measurement of understory vegetation in pine forests: dwarf shrubs, lichen, and moss[J]. Remote Sensing of Environment, 2005, 94(3): 343-354. doi: 10.1016/j.rse.2004.10.009
    BARIBEAU R, NEIL W S, CÔTÉ É. Development of a robot-based gonioreflectometer for spectral BRDF measurement[J]. Journal of Modern Optics, 2009, 56(13): 1497-1503. doi: 10.1080/09500340903045702
    JOHANSSON N, NEUMAN M, ANDERSSON M, et al. Influence of finite-sized detection solid angle on bidirectional reflectance distribution function measurements[J]. Applied Optics, 2014, 53(6): 1212-1220. doi: 10.1364/AO.53.001212
    LIU Y L, YU K, LIU Z L, et al. Polarized BRDF measurement of steel E235B in the near-infrared region: based on a self-designed instrument with absolute measuring method[J]. Infrared Physics &Technology, 2018, 91: 78-84.
    戴景民, 赵忠义, 李颖. 可变温条件下材料表面的双向反射分布函数测量[J]. 应用光学,2008,29(3):321-325.

    DAI J M, ZHAO ZH Y, LI Y. BRDF measurement of material surface at variable temperatures[J]. Journal of Applied Optics, 2008, 29(3): 321-325. (in Chinese)
    关洪宇, 张文杰, 赵军明, 等. 钛合金粗糙表面的偏振光及变温BRDF特性[J]. 红外与毫米波学报,2016,35(1):109-115. doi: 10.11972/j.issn.1001-9014.2016.01.018

    GUAN H Y, ZHANG W J, ZHAO J M, et al. Polarization and temperature dependent BRDF of titanium alloy rough surface[J]. Journal of Infrared and Millimeter Waves, 2016, 35(1): 109-115. (in Chinese) doi: 10.11972/j.issn.1001-9014.2016.01.018
    BAILEY A W, EARLY E A, KEPPLER K S, et al. Dynamic bidirectional reflectance distribution functions: measurement and representation[J]. Journal of Laser Applications, 2008, 20(1): 22-36. doi: 10.2351/1.2831632
    李振, 刘寒蒙, 姚志霞, 等. 二氧化钛纳米管阵列/钛pH电极制备与表征[J]. 分析化学,2018,46(12):1961-1967. doi: 10.11895/j.issn.0253-3820.181459

    LI ZH, LIU H M, YAO ZH X, et al. Preparation and characterization of titanium dioxide nanotube array/titanium pH electrode[J]. Chinese Journal of Analytical Chemistry, 2018, 46(12): 1961-1967. (in Chinese) doi: 10.11895/j.issn.0253-3820.181459
    唐小强, 陈裕雲, 罗燕妮, 等. 基于TiO2NRs@ZnIn2S4 NSs复合材料的谷胱甘肽光电化学传感器的构建与应用[J]. 分析化学,2019,47(8):1188-1194.

    TANG X Q, CHEN Y Y, LUO Y N, et al. A novel glutathione photoelectrochemical sensor based on titanium dioxide Nanorods@ZnIn2S4 Nanosheets nanocomposites[J]. Chinese Journal of Analytical Chemistry, 2019, 47(8): 1188-1194. (in Chinese)
    王帅, 徐俊平, 陈厚孚, 等. 金属(氢)氧化物参与木质素微生物转化形成类胡敏酸的结构特征分析[J]. 分析化学,2019,47(11):1809-1815.

    WANG SH, XU J P, CHEN H F, et al. Structural characteristics of Humic-like acid from microbial transformation of lignin participated by metal (hydro) oxides[J]. Chinese Journal of Analytical Chemistry, 2019, 47(11): 1809-1815. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views(1916) PDF downloads(86) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    Baidu
    map