Volume 13Issue 4
Aug. 2020
Turn off MathJax
Article Contents
HAO Ya-ru, DENG Zhao-qi. The effects of metallic contacts on the lasing characteristics of organic thin films[J]. Chinese Optics, 2020, 13(4): 866-872. doi: 10.37188/CO.2020-0007
Citation: HAO Ya-ru, DENG Zhao-qi. The effects of metallic contacts on the lasing characteristics of organic thin films[J].Chinese Optics, 2020, 13(4): 866-872.doi:10.37188/CO.2020-0007

The effects of metallic contacts on the lasing characteristics of organic thin films

doi:10.37188/CO.2020-0007
Funds:Supported by National Natural Science Foundation of China (No.61605083); Major Projects in Zhongshan City (No.2017B1023)
More Information
  • Author Bio:

    Yaoru Haowas born in Shijiazhuang, Hebei, in 1981. She received a Ph.D. degree in optics engineering in 2009 in the Changchun Institute of Optics, Fine Mechanics and Physics, Jilin, China. Her official title is Lecturer. Her research interests are in applied optics and computer simulation. E-mail:fengyunxiaohao@foxmail.com

    Zhaoqi Dengwas born in Yixing, Jiangsu, in 1981. He received an M.Sc. degree in optics engineering in 2007 in the Changchun Institute of Optics, Fine Mechanics and Physics, Jilin, China. His title is Lecturer. His research interests are in applied optics and computer simulation. E-mail:yeyunxiaopan@foxmail.com

  • Corresponding author:yeyunxiaopan@foxmail.com
  • Received Date:10 Jan 2020
  • Rev Recd Date:09 Mar 2020
  • Publish Date:01 Aug 2020
  • Optical loss caused by metallic contacts are thought to be a major obstacle to the achievement of organic laser diodes. We find that multi-channel emissions and Surface Plasmons (SPs) by designing a proper distributed feedback structure can allow successful lasing in organic thin films in the presence of contacting electrodes and even show better lasing performance when compared to metal-free cases. In this paper, a lower threshold (0.026 mJ/pulse) laser emission is achieved with the Ag metal electrode on the grating structure with a period of 740 nm. Since there is no increase in device thickness, the electrical properties are not reduced when the optical properties are improved.

  • loading
  • [1]
    QIAN SH X, SNOW J B, TZENG H M, et al. Lasing droplets: highlighting the liquid-air interface by laser emission[J]. Science, 1986, 231(4737): 486-488. doi:10.1126/science.231.4737.486
    [2]
    KALLINGER C, HILMER M, HAUGENEDER A, et al. A flexible conjugated polymer laser[J]. Advanced Materials, 1998, 10(12): 920-923. doi:10.1002/(SICI)1521-4095(199808)10:12<920::AID-ADMA920>3.0.CO;2-7
    [3]
    FROLOV S V, VARDENY Z V, YOSHINO K. Cooperative and stimulated emission in poly ( p-phenylene-vinylene) thin films and solutions[J]. Physical Review B, 1998, 57(15): 9141-9147. doi:10.1103/PhysRevB.57.9141
    [4]
    ZHANG L, YANG Y, GAO J CH, et al. Study on Amplified Spontaneous Emission Properties of En BOD material[J]. Chinese Journal of Luminescence, 2015, 36(6): 661-665. (in Chinese) doi:10.3788/fgxb20153606.0661
    [5]
    GROSSMANN T, WIENHOLD T, BOG U, et al. Polymeric photonic molecule super-mode lasers on silicon[J]. Light: Science& Applications, 2013, 2(5): e82.
    [6]
    ZHANG L, LI Y T, LIN J, et al. Microcavity lasing at 650 nm from Alq∶DCJTI film under optical pumping[J]. Chinese Journal of Luminescence, 2015, 36(9): 1059-1063. (in Chinese) doi:10.3788/fgxb20153609.1059
    [7]
    CHEN SH M, LI K F, LI G X, et al. Gigantic electric-field-induced second harmonic generation from an organic conjugated polymer enhanced by a band-edge effect[J]. Light: Science& Applications, 2019, 8(1): 17.
    [8]
    FU D X, ZHENG L N, LIU J H, et al. Quantitative analysis of silver nanoparticles in single cell by laser ablation inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2019, 47(9): 1390-1394. (in Chinese)
    [9]
    SUN L X, WANG W, TIAN X Y, et al. Progress in research and application of micro-laser-induced breakdown spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2018, 46(10): 1518-1527. (in Chinese) doi:10.11895/j.issn.0253-3820.181150
    [10]
    LETOKHOV V S. Laser biology and medicine[J]. Nature, 1985, 316(6026): 325-330. doi:10.1038/316325a0
    [11]
    MOUROU G A, BARTY C P, PERRY M D. Ultrahigh-intensity laser: physics of the extreme on a tabletop[R]. Washington, DC: Lawrence Livermore National Lab, 1997.
    [12]
    BRANCALEON L, MOSELEY H. Laser and non-laser light sources for photodynamic therapy[J]. Lasers in Medical Science, 2002, 17(3): 173-186. doi:10.1007/s101030200027
    [13]
    RAO G F, HUANG L, LIU M H, et al. Discrimination of microbe species by laser induced breakdown spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2018, 46(7): 1122-1128. (in Chinese) doi:10.11895/j.issn.0253-3820.171448
    [14]
    YU J J, LIU P, ZENG ZH, et al. Development and characterization of a linear matrix-assisted laser desorption ionization mass spectrometer[J]. Chinese Journal of Analytical Chemistry, 2018, 46(4): 463-470. (in Chinese) doi:10.1016/S1872-2040(17)61077-6
    [15]
    DENG W CH, HAN G B, LI Y F, et al. Distinction of cells infected with respiratory syncytial virus by matrix assisted laser desorption/ionization mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2018, 46(2): 165-169. (in Chinese) doi:10.11895/j.issn.0253-3820.171011
    [16]
    KOZLOV V G, BULOVIĆ V, BURROWS P E, et al. Laser action in organic semiconductor waveguide and double-heterostructure devices[J]. Nature, 1997, 389(6649): 362-364. doi:10.1038/38693
    [17]
    LI Y T, TIAN Y B, LIU X Y. Key techniques in electrically pumped organic semiconductor laser[J]. Chinese Journal of Luminescence, 2009, 30(3): 414-416. (in Chinese)
    [18]
    ANDREW P, TURNBULL G A, SAMUEL I D W, et al. Photonic band structure and emission characteristics of a metal-backed polymeric distributed feedback laser[J]. Applied Physics Letters, 2002, 81(6): 954-956. doi:10.1063/1.1496497
    [19]
    REUFER M, RIECHEL S, LUPTON J M, et al. Low-threshold polymeric distributed feedback lasers with metallic contacts[J]. Applied Physics Letters, 2004, 84(17): 3262-3264. doi:10.1063/1.1712029
    [20]
    GIFFORD D K, HALL D G. Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling[J]. Applied Physics Letters, 2002, 81(23): 4315-4317. doi:10.1063/1.1525882
    [21]
    FENG J, OKAMOTO T, KAWATA S. Enhancement of electroluminescence through a two-dimensional corrugated metal film by grating-induced surface-plasmon cross coupling[J]. Optics Letters, 2005, 30(17): 2302-2304. doi:10.1364/OL.30.002302
    [22]
    BRUECK S R J, DIADIUK V, JONES T, et al. Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves[J]. Applied Physics Letters, 1985, 46(10): 915-917. doi:10.1063/1.95819
    [23]
    JIANG L Y, YIN T T, DUBROVKIN A M, et al. In-plane coherent control of plasmon resonances for plasmonic switching and encoding[J]. Light: Science& Applications, 2019, 8(1): 21.
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)/Tables(1)

    Article views(1541) PDF downloads(64) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map