Citation: | CHEN Xiao-dong, SHENG Jing, YANG Jin, CAI Huai-yu, JIN Hao. Ultrasound image segmentation based on a multi-parameter Gabor filter and multiscale local level set method[J]. Chinese Optics, 2020, 13(5): 1075-1084. doi: 10.37188/CO.2020-0025 |
[1] |
赵越, 毛友生. 食管肿瘤微创外科治疗进展[J]. 中华胃肠外科杂志,2018,21(1):112-117. doi: 10.3760/cma.j.issn.1671-0274.2018.01.019
ZHAO Y, MAO Y SH. Advancement of minimally invasive esophagectomy[J]. Chinese Journal of Gastrointestinal Surgery, 2018, 21(1): 112-117. (in Chinese) doi: 10.3760/cma.j.issn.1671-0274.2018.01.019
|
[2] |
LEEM G, CHUNG M J, PARK J Y, et al. Clinical value of contrast-enhanced harmonic endoscopic ultrasonography in the differential diagnosis of pancreatic and gallbladder masses[J]. Clinical Endoscopy, 2018, 51(1): 80-88. doi: 10.5946/ce.2017.044
|
[3] |
KAMATA K, TAKENAKA M, KITANO M, et al. Contrast-enhanced harmonic endoscopic ultrasonography for differential diagnosis of submucosal tumors of the upper gastrointestinal tract[J]. Journal of Gastroenterology and Hepatology, 2017, 32(10): 1686-1692. doi: 10.1111/jgh.13766
|
[4] |
王亚强, 陈波. 一种改进的各向异性扩散超声图像去噪算法[J]. 液晶与显示,2015,30(2):310-316. doi: 10.3788/YJYXS20153002.0310
WANG Y Q, CHEN B. Improved anisotropic diffusion ultrasound image denoising algorithm[J]. Chinese Journal of Liquid Crystals and Displays, 2015, 30(2): 310-316. (in Chinese) doi: 10.3788/YJYXS20153002.0310
|
[5] |
SELVARANI S, RAJENDRAN P. Detection of renal calculi in ultrasound image using meta-heuristic support vector machine[J]. Journal of Medical Systems, 2019, 43(9): 300. doi: 10.1007/s10916-019-1407-1
|
[6] |
SAHOO P K, SOLTANI S, WONG A K C. A survey of thresholding techniques[J]. Computer Vision,Graphics,and Image Processing, 1988, 41(2): 233-260. doi: 10.1016/0734-189X(88)90022-9
|
[7] |
宁赛男, 朱明, 孙宏海, 等. 一种改进的Sobel自适应边缘检测的FPGA实现[J]. 液晶与显示,2014,29(3):395-402. doi: 10.3788/YJYXS20142903.0395
NING S N, ZHU M, SUN H H, et al. Realization of improved Sobel adaptive edge detection algorithm based on FPGA[J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(3): 395-402. (in Chinese) doi: 10.3788/YJYXS20142903.0395
|
[8] |
RAJA N S M, FERNANDES S L, DEY N, et al.. Contrast enhanced medical MRI evaluation using Tsallis entropy and region growing segmentation[J]. Journal of Ambient Intelligence and Humanized Computing, 2018(1): 1-12, doi: 10.1007/s12652-018-0854-8.
|
[9] |
严加勇, 庄天戈. 医学超声图像分割技术的研究及发展趋势[J]. 北京生物医学工程, 2003, 22(1): 67-71.
YAN J Y, ZHUANG T G, Research and development trend of medical ultrasonic image segmentation technology[J]. Beijing Biomedical Engineering, 2003, 22(1): 67-71. (in Chinese)
|
[10] |
KASS M, WITKIN A, TERZOPOULOS D. Snakes: active contour models[J]. International Journal of Computer Vision, 1988, 1(4): 321-331. doi: 10.1007/BF00133570
|
[11] |
毕晓君, 肖婧. 差分进化算法GVF Snake模型在PET图像分割中的应用[J]. 中国图象图形学报,2018,16(3):382-388.
BI X J, XIAO J. Application of DE algorithm and improved GVF Snake model in segmentation of PET image[J]. Journal of Image and Graphics, 2018, 16(3): 382-388. (in Chinese)
|
[12] |
OSHER S, SETHIAN J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulation[J]. Journal of Computational Physics, 1988, 79(1): 12-49. doi: 10.1016/0021-9991(88)90002-2
|
[13] |
王醒策, 张美霞, 武仲科, 等. 基于全局LBF水平集模型的脑血管层次粗分割[J]. 光学精密工程,2013,21(12):3283-3297. doi: 10.3788/OPE.20132112.3283
WANG X C, ZHANG M X, WU ZH K, et al. Level coarse brain vessel segmentation based on global LBF model[J]. Optics and Precision Engineering, 2013, 21(12): 3283-3297. (in Chinese) doi: 10.3788/OPE.20132112.3283
|
[14] |
刘建磊, 隋青美, 朱文兴. 结合概率密度函数和主动轮廓模型的磁共振图像分割[J]. 光学精密工程,2014,22(12):3435-3443. doi: 10.3788/OPE.20142212.3435
LIU J L, SUI Q M, ZHU W X. MR image segmentation based on probability density function and active contour model[J]. Optics and Precision Engineering, 2014, 22(12): 3435-3443. (in Chinese) doi: 10.3788/OPE.20142212.3435
|
[15] |
CHAN T F, VESE L A. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001, 10(2): 266-277. doi: 10.1109/83.902291
|
[16] |
MUMFORD D, SHAH J. Optimal approximations by piecewise smooth functions and associated variational problems[J]. Communications on Pure and Applied Mathematics, 1989, 42(5): 577-685. doi: 10.1002/cpa.3160420503
|
[17] |
杨名宇. 基于改进Chan-Vese模型的图像分割[J]. 液晶与显示,2014,29(3):473-478. doi: 10.3788/YJYXS20142903.0473
YANG M Y. Image segmentation based on improved Chan-Vese model[J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(3): 473-478. (in Chinese) doi: 10.3788/YJYXS20142903.0473
|
[18] |
卢小鹏, 李辉, 刘云杰, 等. 基于Chan-Vese模型的TFT-LCD Mura缺陷快速分割算法[J]. 液晶与显示,2014,29(1):146-151. doi: 10.3788/YJYXS20142901.0146
LU X P, LI H, LIU Y J, et al. Algorithm for fast TFT-LCD Mura defect image segmentation based on Chan-Vese model[J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(1): 146-151. (in Chinese) doi: 10.3788/YJYXS20142901.0146
|
[19] |
LI CH M, KAO C Y, GORE J C, et al.. Implicit active contours driven by local binary fitting energy[C]. Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2007.
|
[20] |
LANKTON S, TANNENBAUM A. Localizing region-based active contours[J]. IEEE Transactions on Image Processing, 2008, 17(11): 2029-2039. doi: 10.1109/TIP.2008.2004611
|
[21] |
LI CH M, HUANG R, DING ZH H, et al. A Level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI[J]. IEEE Transactions on Image Processing, 2011, 20(7): 2007-2016. doi: 10.1109/TIP.2011.2146190
|
[22] |
赵杰, 祁永梅, 潘正勇. 结合边界和区域的水平集超声图像分割算法[J]. 金宝搏188软件怎么用
杂志,2013,34(6):46-48. doi: 10.3969/j.issn.0253-2743.2013.06.019
ZHAO J, QI Y M, PAN ZH Y. Ultrasound image segmentation method based on level set combined with boundary and region[J]. Laser Journal, 2013, 34(6): 46-48. (in Chinese) doi: 10.3969/j.issn.0253-2743.2013.06.019
|
[23] |
梁思, 王雷, 杨晓冬. 一种血管约束的局部活动轮廓模型[J]. 液晶与显示,2016,31(7):686-694. doi: 10.3788/YJYXS20163107.0686
LIANG S, WANG L, YANG X D. A novel vessel-constrained active contour with application to vessel segmentation[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(7): 686-694. (in Chinese) doi: 10.3788/YJYXS20163107.0686
|
[24] |
SELVATHI D, BAMA S. Phase based distance regularized level set for the segmentation of ultrasound kidney images[J]. Pattern Recognition Letters, 2017, 86(C): 9-17.
|
[25] |
XIONG X L, GUO Y, WANG Y Y, et al.. Kidney tumor segmentation in ultrasound images using adaptive sub-regional evolution level set models[J]. Journal of Biomedical Engineering, 2019, 36(6): 945-956.
|
[26] |
ZHAO W CH, XU X Z, LIU P P, et al. The improved level set evolution for ultrasound image segmentation in the high-intensity focused ultrasound ablation therapy[J]. Optik, 2020, 202: 163669. doi: 10.1016/j.ijleo.2019.163669
|
[27] |
高慧芳, 杨明. 一种改进的凸变分水平集模型在图像分割中的应用[J]. 现代电子技术,2017,40(11):72-75.
GAO H F, YANG M. Application of an improved convex variational level-set model in image segmentation[J]. Modern Electronics Technique, 2017, 40(11): 72-75. (in Chinese)
|
[28] |
LI CH M, XU CH Y, GUI CH F, et al. Distance regularized level set evolution and its application to image segmentation[J]. IEEE Transactions on Image Processing, 2010, 19(12): 3243-3254. doi: 10.1109/TIP.2010.2069690
|
[29] |
GABOR D. Theory of communication[J]. IEEE Pro., London, 1946, 93(73): 58.
|
[30] |
汪维华. 视网膜图像分割算法研究[D]. 重庆: 中国科学院大学(中国科学院重庆绿色智能技术研究院), 2018.
WANG W H. Research on the segmentation algorithm for retinal image[D]. Chongqing: Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 2018. (in Chinese)
|
[31] |
MARĈELJA S. Mathematical description of the responses of simple cortical cells[J]. Journal of the Optical Society of America, 1980, 70(11): 1297-1300. doi: 10.1364/JOSA.70.001297
|