Citation: | GAO Shi-Jie, WU Jia-Bin, LIU Yong-Kai, MA Shuang, NIU Yan-Jun, YANG Hui-sheng. Development status and trend of micro-satellite laser communication systems[J].Chinese Optics, 2020, 13(6): 1171-1181.doi:10.37188/CO.2020-0033 |
[1] |
CAPLAN D O, CARNEY J J, LAFON R E,
et al. Design of a 40-watt 1.55 μm uplink transmitter for lunar laser communications[J].
Proceedings of SPIE, 2012, 8246: 82460M.
doi:10.1117/12.915982
|
[2] |
KOYAMA Y, TOYOSHIMA M, TAKAYAMA Y,
et al.. SOTA: small optical transponder for micro-satellite[C].
Proceedings of 2011 International Conference on Space Optical Systems and Applications, IEEE, 2011: 97-101.
|
[3] |
JANSON S, WELLE R, ROSE T,
et al.. The NASA optical communications and sensor demonstration program: initial flight results[C].
Proceedings of the 29th Annual AIAA/USU Conference on Small Satellites, 2015.
|
[4] |
ROSE T S, ROWEN D W, LALUMONDIERE S,
et al. Optical communications downlink from a 1.5U Cubesat: OCSD program[J].
Proceedings of SPIE, 2018, 11180: 11180J.
|
[5] |
ROWEN D, JANSON S, COFFMAN C,
et al.. The NASA optical communications and sensor demonstration program: proximity operations[C].
Proceedings of the 32th Annual AIAA/USU Conference on Small Satellites, 2018.
|
[6] |
YENCHESKY L, CIERNY O, GRENFELL P,
et al.. Optomechanical design and analysis for nanosatellite laser communications[C].
Proceedings of the 33rd Annual AIAA/USU Conference on Small Satellites, 2019.
|
[7] |
SERRA P, CIERNY O, DIEZ R,
et al.. Optical communications crosslink payload prototype development for the Cubesat Laser Infrared CrosslinK (CLICK) mission[C].
Proceedings of the 33rd Annual AIAA/USU Conference on Small Satellites, 2019.
|
[8] |
KUWAHARA T, YOSHIDA K, TOMIOKA Y,
et al.. Laser data downlink system of micro-satellite RISESAT[C].
Proceedings of the 27th Annual AIAA/USU Conference on Small Satellites, 2013.
|
[9] |
TANAKA T, KAWAMURA Y, TANAKA T. Development and operations of nano-satellite FITSAT-1 (NIWAKA)[J].
Acta Astronautica, 2015, 107: 112-129.
doi:10.1016/j.actaastro.2014.10.023
|
[10] |
BAISTER G, GREGER R, BACHER M,
et al. OPTEL-μ LEO to ground laser communications terminal: flight design and status of the EQM development project[J].
Proceedings of SPIE, 2016, 10562: 105622U.
|
[11] |
MÜNCHEBERG S, GAL C, HORWATH J,
et al. Development status and breadboard results of a laser communication terminal for large LEO constellations[J].
Proceedings of SPIE, 2018, 11180: 18034.
|
[12] |
CARRIZO C, KNAPEK M, HORWATH J,
et al. Optical inter-satellite link terminals for next generation satellite constellations[J].
Proceedings of SPIE, 2020, 11272: 1127203.
|
[13] |
吕佳飞. 微小型卫星 通信终端跟瞄机构的研究[D]. 长春: 长春理工大学, 2017.
LV J F.Research for the spaceborne laser communication terminal tracking-pointing turntable[D]. Changchun: Changchun University of Science and Technology, 2017. (in Chinese).
|
[14] |
TALMOR A G, HARDING JR H, CHEN C C. Two-axis gimbal for air-to-air and air-to-ground laser communications[J].
Proceedings of SPIE, 2016, 9739: 97390G.
doi:10.1117/12.2218097
|
[15] |
李波, 王挺峰, 王弟男, 等. 大气传输湍流扰动仿真技术[J]. 中国光学,2012,5(3):289-295.
LI B, WANG T F, WANG D N,
et al. Simulation of laser beam propagation through turbulence[J].
Chinese Optics, 2012, 5(3): 289-295. (in Chinese)
|
[16] |
赵海丽, 姜会林, 王晓曼, 等. 空间光通信中高帧频相机动态调光技术研究[J]. 液晶与显示,2012,27(2):267-270.
doi:10.3788/YJYXS20122702.0267
ZHAO H L, JIANG H L, WANG X M,
et al. Dynamic light-adjusting technology of high frame frequency CCD camera in space optical communication system[J].
Chinese Journal of Liquid Crystals and Displays, 2012, 27(2): 267-270. (in Chinese)
doi:10.3788/YJYXS20122702.0267
|
[17] |
王玉坤, 贾娜, 张锐. 通信成像光斑处理方法研究[J]. 液晶与显示,2017,32(9):736-740.
doi:10.3788/YJYXS20173209.0736
WANG Y K, JIA N, ZHANG R. Laser communication spots imaging process method[J].
Chinese Journal of Liquid Crystals and Displays, 2017, 32(9): 736-740. (in Chinese)
doi:10.3788/YJYXS20173209.0736
|
[18] |
高世杰, 盛磊, 吴志勇, 等. 大气 通信光斑图像的快速复原与实时检测[J]. 光学 精密工程,2015,23(8):2393-2399.
doi:10.3788/OPE.20152308.2393
GAO SH J, SHENG L, WU ZH Y,
et al. Rapid restoration and real-time detection on spot image of atmospheric laser communication[J].
Optics and Precision Engineering, 2015, 23(8): 2393-2399. (in Chinese)
doi:10.3788/OPE.20152308.2393
|
[19] |
马晶, 高庞, 谭立英, 等. 星地光通信中PAT链路的衰落冗余[J]. 光学 精密工程,2007,15(3):308-314.
MA J, GAO P, TAN L Y,
et al. Fade budgets of PAT link in satellite-to-ground optical communications[J].
Optics and Precision Engineering, 2007, 15(3): 308-314. (in Chinese)
|
[20] |
林旭东, 薛陈, 刘欣悦, 等. 自适应光学波前校正器技术发展现状[J]. 中国光学,2012,5(4):337-351.
LIN X D, XUE CH, LIU X Y,
et al. Current status and research development of wavefront correctors for adaptive optics[J].
Chinese Optics, 2012, 5(4): 337-351. (in Chinese)
|
[21] |
刘超, 陈善球, 廖周, 等. 自适应光学技术在通信波段对大气湍流的校正[J]. 光学 精密工程,2014,22(10):2605-2610.
doi:10.3788/OPE.20142210.2605
LIU CH, CHEN SH Q, LIAO ZH,
et al. Correction of atmospheric turbulence by adaptive optics in waveband of free-space coherent laser communication[J].
Optics and Precision Engineering, 2014, 22(10): 2605-2610. (in Chinese)
doi:10.3788/OPE.20142210.2605
|
[22] |
吴天琦, 王睿扬, 王超, 等. 单模光纤章动跟踪耦合系统设计[J]. 液晶与显示,2020,35(1):62-69.
doi:10.3788/YJYXS20203501.0062
WU T Q, WANG R Y, WANG CH,
et al. Design of single mode fiber optic nutation tracking coupling system[J].
Chinese Journal of Liquid Crystals and Displays, 2020, 35(1): 62-69. (in Chinese)
doi:10.3788/YJYXS20203501.0062
|
[23] |
付强, 姜会林, 王晓曼, 等. 空间 通信研究现状及发展趋势[J]. 中国光学,2012,5(2):116-125.
FU Q, JIANG H L, WANG X M,
et al. Research status and development trend of space laser communication[J].
Chinese Optics, 2012, 5(2): 116-125. (in Chinese)
|
[24] |
姜会林, 安岩, 张雅琳, 等. 空间 通信现状、发展趋势及关键技术分析[J]. 飞行器测控学报,2015,34(3):207-217.
JIANG H L, AN Y, ZHANG Y L,
et al. Analysis of the status quo, development trend and key technologies of space laser communication[J].
Journal of Spacecraft TT&
C Technology, 2015, 34(3): 207-217. (in Chinese)
|
[25] |
VELAZCO J E, WERNICKE D, GRIFFIN J,
et al.. Inter-spacecraft omnidirectional optical communicator for swarms[C].
Proceedings of the 33th Annual AIAA/USU Conference on Small Satellites, 2019.
|