Volume 13Issue 6
Dec. 2020
Turn off MathJax
Article Contents
GAO Shi-Jie, WU Jia-Bin, LIU Yong-Kai, MA Shuang, NIU Yan-Jun, YANG Hui-sheng. Development status and trend of micro-satellite laser communication systems[J]. Chinese Optics, 2020, 13(6): 1171-1181. doi: 10.37188/CO.2020-0033
Citation: GAO Shi-Jie, WU Jia-Bin, LIU Yong-Kai, MA Shuang, NIU Yan-Jun, YANG Hui-sheng. Development status and trend of micro-satellite laser communication systems[J].Chinese Optics, 2020, 13(6): 1171-1181.doi:10.37188/CO.2020-0033

Development status and trend of micro-satellite laser communication systems

doi:10.37188/CO.2020-0033
Funds:Supported by National Natural Science Foundation of China (No. 11603024, No. 11973041); National Key R & D Program of China (No. 2016YFB0500100); Civil Aerospace Pre-research Project (No. D04010)
More Information
  • Corresponding author:gaoshijie@ciomp.ac.cn
  • Received Date:02 Mar 2020
  • Rev Recd Date:24 Apr 2020
  • Available Online:15 Oct 2020
  • Publish Date:01 Dec 2020
  • With its high speed, small size, light-weight and low power consumption, space laser communication has become an indispensable and effective means of high-speed communication between satellites, especially in micro-satellite applications, which can benefit more strongly from the advantages of laser communication. This paper provides a detailed introduction of the latest research progress in the field of micro-satellite laser communication technology. On this basis, key techniques such as light miniaturization of identical orbital terminals, light miniaturization of different orbital terminals and turbulence mitigation technologies are summarized, and the development trends of the technology’s applications, duplex communication, single-point to multi-point, localization and batch production capacity are concluded.

  • loading
  • [1]
    CAPLAN D O, CARNEY J J, LAFON R E, et al. Design of a 40-watt 1.55 μm uplink transmitter for lunar laser communications[J]. Proceedings of SPIE, 2012, 8246: 82460M. doi:10.1117/12.915982
    [2]
    KOYAMA Y, TOYOSHIMA M, TAKAYAMA Y, et al.. SOTA: small optical transponder for micro-satellite[C]. Proceedings of 2011 International Conference on Space Optical Systems and Applications, IEEE, 2011: 97-101.
    [3]
    JANSON S, WELLE R, ROSE T, et al.. The NASA optical communications and sensor demonstration program: initial flight results[C]. Proceedings of the 29th Annual AIAA/USU Conference on Small Satellites, 2015.
    [4]
    ROSE T S, ROWEN D W, LALUMONDIERE S, et al. Optical communications downlink from a 1.5U Cubesat: OCSD program[J]. Proceedings of SPIE, 2018, 11180: 11180J.
    [5]
    ROWEN D, JANSON S, COFFMAN C, et al.. The NASA optical communications and sensor demonstration program: proximity operations[C]. Proceedings of the 32th Annual AIAA/USU Conference on Small Satellites, 2018.
    [6]
    YENCHESKY L, CIERNY O, GRENFELL P, et al.. Optomechanical design and analysis for nanosatellite laser communications[C]. Proceedings of the 33rd Annual AIAA/USU Conference on Small Satellites, 2019.
    [7]
    SERRA P, CIERNY O, DIEZ R, et al.. Optical communications crosslink payload prototype development for the Cubesat Laser Infrared CrosslinK (CLICK) mission[C]. Proceedings of the 33rd Annual AIAA/USU Conference on Small Satellites, 2019.
    [8]
    KUWAHARA T, YOSHIDA K, TOMIOKA Y, et al.. Laser data downlink system of micro-satellite RISESAT[C]. Proceedings of the 27th Annual AIAA/USU Conference on Small Satellites, 2013.
    [9]
    TANAKA T, KAWAMURA Y, TANAKA T. Development and operations of nano-satellite FITSAT-1 (NIWAKA)[J]. Acta Astronautica, 2015, 107: 112-129. doi:10.1016/j.actaastro.2014.10.023
    [10]
    BAISTER G, GREGER R, BACHER M, et al. OPTEL-μ LEO to ground laser communications terminal: flight design and status of the EQM development project[J]. Proceedings of SPIE, 2016, 10562: 105622U.
    [11]
    MÜNCHEBERG S, GAL C, HORWATH J, et al. Development status and breadboard results of a laser communication terminal for large LEO constellations[J]. Proceedings of SPIE, 2018, 11180: 18034.
    [12]
    CARRIZO C, KNAPEK M, HORWATH J, et al. Optical inter-satellite link terminals for next generation satellite constellations[J]. Proceedings of SPIE, 2020, 11272: 1127203.
    [13]
    吕佳飞. 微小型卫星 通信终端跟瞄机构的研究[D]. 长春: 长春理工大学, 2017.

    LV J F.Research for the spaceborne laser communication terminal tracking-pointing turntable[D]. Changchun: Changchun University of Science and Technology, 2017. (in Chinese).
    [14]
    TALMOR A G, HARDING JR H, CHEN C C. Two-axis gimbal for air-to-air and air-to-ground laser communications[J]. Proceedings of SPIE, 2016, 9739: 97390G. doi:10.1117/12.2218097
    [15]
    李波, 王挺峰, 王弟男, 等. 大气传输湍流扰动仿真技术[J]. 中国光学,2012,5(3):289-295.

    LI B, WANG T F, WANG D N, et al. Simulation of laser beam propagation through turbulence[J]. Chinese Optics, 2012, 5(3): 289-295. (in Chinese)
    [16]
    赵海丽, 姜会林, 王晓曼, 等. 空间光通信中高帧频相机动态调光技术研究[J]. 液晶与显示,2012,27(2):267-270. doi:10.3788/YJYXS20122702.0267

    ZHAO H L, JIANG H L, WANG X M, et al. Dynamic light-adjusting technology of high frame frequency CCD camera in space optical communication system[J]. Chinese Journal of Liquid Crystals and Displays, 2012, 27(2): 267-270. (in Chinese) doi:10.3788/YJYXS20122702.0267
    [17]
    王玉坤, 贾娜, 张锐. 通信成像光斑处理方法研究[J]. 液晶与显示,2017,32(9):736-740. doi:10.3788/YJYXS20173209.0736

    WANG Y K, JIA N, ZHANG R. Laser communication spots imaging process method[J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(9): 736-740. (in Chinese) doi:10.3788/YJYXS20173209.0736
    [18]
    高世杰, 盛磊, 吴志勇, 等. 大气 通信光斑图像的快速复原与实时检测[J]. 光学 精密工程,2015,23(8):2393-2399. doi:10.3788/OPE.20152308.2393

    GAO SH J, SHENG L, WU ZH Y, et al. Rapid restoration and real-time detection on spot image of atmospheric laser communication[J]. Optics and Precision Engineering, 2015, 23(8): 2393-2399. (in Chinese) doi:10.3788/OPE.20152308.2393
    [19]
    马晶, 高庞, 谭立英, 等. 星地光通信中PAT链路的衰落冗余[J]. 光学 精密工程,2007,15(3):308-314.

    MA J, GAO P, TAN L Y, et al. Fade budgets of PAT link in satellite-to-ground optical communications[J]. Optics and Precision Engineering, 2007, 15(3): 308-314. (in Chinese)
    [20]
    林旭东, 薛陈, 刘欣悦, 等. 自适应光学波前校正器技术发展现状[J]. 中国光学,2012,5(4):337-351.

    LIN X D, XUE CH, LIU X Y, et al. Current status and research development of wavefront correctors for adaptive optics[J]. Chinese Optics, 2012, 5(4): 337-351. (in Chinese)
    [21]
    刘超, 陈善球, 廖周, 等. 自适应光学技术在通信波段对大气湍流的校正[J]. 光学 精密工程,2014,22(10):2605-2610. doi:10.3788/OPE.20142210.2605

    LIU CH, CHEN SH Q, LIAO ZH, et al. Correction of atmospheric turbulence by adaptive optics in waveband of free-space coherent laser communication[J]. Optics and Precision Engineering, 2014, 22(10): 2605-2610. (in Chinese) doi:10.3788/OPE.20142210.2605
    [22]
    吴天琦, 王睿扬, 王超, 等. 单模光纤章动跟踪耦合系统设计[J]. 液晶与显示,2020,35(1):62-69. doi:10.3788/YJYXS20203501.0062

    WU T Q, WANG R Y, WANG CH, et al. Design of single mode fiber optic nutation tracking coupling system[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(1): 62-69. (in Chinese) doi:10.3788/YJYXS20203501.0062
    [23]
    付强, 姜会林, 王晓曼, 等. 空间 通信研究现状及发展趋势[J]. 中国光学,2012,5(2):116-125.

    FU Q, JIANG H L, WANG X M, et al. Research status and development trend of space laser communication[J]. Chinese Optics, 2012, 5(2): 116-125. (in Chinese)
    [24]
    姜会林, 安岩, 张雅琳, 等. 空间 通信现状、发展趋势及关键技术分析[J]. 飞行器测控学报,2015,34(3):207-217.

    JIANG H L, AN Y, ZHANG Y L, et al. Analysis of the status quo, development trend and key technologies of space laser communication[J]. Journal of Spacecraft TT& C Technology, 2015, 34(3): 207-217. (in Chinese)
    [25]
    VELAZCO J E, WERNICKE D, GRIFFIN J, et al.. Inter-spacecraft omnidirectional optical communicator for swarms[C]. Proceedings of the 33th Annual AIAA/USU Conference on Small Satellites, 2019.
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)/Tables(8)

    Article views(4643) PDF downloads(673) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map